
LOGIC: A Coq Library for Logics

Yichen Tao and Qinxiang Cao(B)

Shanghai Jiao Tong University, Shanghai, China

taoyc0904@sjtu.edu.cn, caoqinxiang@gmail.com

Abstract. LOGIC is a Coq library for formalizing logic studies, concern-
ing both logics’ applications and logics themselves (meta-theories). For
applications, users can port derived rules and efficient proof automa-
tion tactics from LOGIC to their own program-logic-based verification
projects. For meta-theories, users can easily formalize a standard sound-
ness proof or a Henkin-style completeness proof for logics like classi-
cal/intuitionistic propositional logic, separation logic and modal logic
with LOGIC’s help. In this paper, we present how compositional and
portable proof engineering is possible in LOGIC.

Keywords: Logic · Coq · Theorem proving

1 Introduction

Theorem provers like Coq [3] and Isabelle [19] have been used for formalizing
sophisticated math proofs, including many important logic theorems [11,12].
Besides its own interests, formalized logics (especially program logics) have been
widely used in program verification tools to guarantee big software systems’
safety [7,9,15]. But for now, there was not yet a systematic, foundational and
formalized library for general logic studies. In this paper, we present LOGIC1 a
Coq library for logic applications and logics’ meta-theories. Specifically,

– we want to provide a foundational library so that more advanced results can
be formalized on its basis, and proofs can be reused for similar conclusions;

– we want to export useful proof rules and proof automation tactics for proving
assertion entailments in different program verification projects;

– we want to use one single “eco-system” to achieve both targets above.

One challenge of LOGIC is to formalize different logics and their meta-theories
in a uniform way (for the purpose of maximum proof reuse). This seems straight-
forward since different logic studies share many technical notations and defini-
tions. For example, “� ϕ” usually means ϕ is provable and “m |= ϕ” describes a
satisfaction relation between m and ϕ. Also, different logics and different seman-
tics usually share some common parts. However, differences in subtle settings
bring about many proof-engineering problems. For instance, different logic stud-
ies may choose different primitive connectives; thus it is even nontrivial to unify
1 A link to the repository of LOGIC: https://github.com/QinxiangCao/LOGIC.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Dong and J.-P. Talpin (Eds.): SETTA 2022, LNCS 13649, pp. 205–226, 2022.
https://doi.org/10.1007/978-3-031-21213-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21213-0_13&domain=pdf
https://github.com/QinxiangCao/LOGIC
https://doi.org/10.1007/978-3-031-21213-0_13

206 Y. Tao and Q. Cao

different semantic definitions, which are usually defined by recursion over syntax
trees. Also, different logics may choose different primitive judgements. Hilbert
systems define provability (� ϕ) by axioms and primary proof rules and define

Φ � ϕ � exists a finite set Ψ ⊆ Φ, s.t. �
⎛
⎝ ∧

ψ∈Ψ

ψ

⎞
⎠ → ϕ. (1)

But sequent calculi use Φ � ϕ (ϕ is derivable from Φ) as their primitive judge-
ments and let � ϕ represent ∅ � ϕ. How to formalize a theory for both of them
is not obvious.

Formalizing a uniform Henkin-style completeness proof is especially diffi-
cult. Different proofs may construct their canonical models differently, e.g. some
proofs choose “maximal consistent sets” to be the canonical model’s possible
worlds while other proofs choose “derivable-closed sets”. Moreover, different
semantics have different additional structures in their models. For example,
modal logics’ Kripke model contains a binary relation for defining box modal-
ity’s semantics. Intuitionistic logics’ Kripke model has a preorder for defining
implication’s semantics. Henkin-style completeness proofs are different in detail
due to the differences in these basic constructions and premises.

Another challenge of LOGIC is to generate efficient proof automation tactics.
For generality, proofs in LOGIC should be parameterized over different languages
and different proof systems. However, this parameterized setting will usually
cause significant overhead for proof construction.

In the rest of this paper, we will explain how LOGIC addresses these formaliza-
tion challenges. We will first introduce some background information about the
Coq theorem prover in Sect. 2. We then give an overview of the whole framework
of LOGIC in Sect. 3. After that, we describe our formalization of connectives,
judgements, and proof rules, along with the meta-logic properties - soundness
and completeness - in Sect. 4. In Sect. 5, we demonstrate how the logic genera-
tor in LOGIC can help us with exportable logic libraries. In the end, we discuss
related work in Sect. 6, and conclude in Sect. 7.

2 Background: Coq Proof Assistant

Coq is a theorem prover whose logical objects are written in a Calculus of Induc-
tive Constructions [6]. This underlying formal language enables Coq’s users to
define higher order functions and state high order propositions, i.e. one can
quantify over a function, a predicate, or even a higher order function/predicate.

Type classes are a special kind of higher order objects in Coq, usually used
to formalize abstract structures, like group, partial order, etc. For example, a
common definition of group G is a tuple (XG,+G,−G, 0G) where XG is the
underlying set, +G is an associative binary function, −G is an inverse function
and 0G is a unit element. In order to describe associativity, one usually writes:
∀ x y z ∈ XG, (x +G y) +G z = x +G (y +G z). Defining groups as a type class
allows Coq’s users to omit that G for conciseness if it is not ambiguous.

LOGIC: A Coq Library for Logics 207

Besides higher order objects, Coq provides a module system for users to easily
structure large developments and a means of massive abstraction. Specifically,
a module is a collection of definitions and proofs; a module signature is a set of
theorem statements; and a functor is a derivation from assumptions (represented
by a module signature) to conclusions (represented by another signature).

The higher order logic system and the module system are two critical Coq
infrastructure for modular development. In comparison, derivations using type
classes are formal Coq proofs for parameterized instances, e.g. a theorem P̂ for
groups usually has a form of: for any group G, some property P holds for G.
Functors are not Coq proofs but proof generators, e.g. given a concrete tuple G,
a functor P̂ for group theory will generate a proof of P (G) from a proof that G
is a group.

3 Overview

The major aim of LOGIC is to reuse definitions and proofs to automatically
generate logic libraries based on users’ demands, as well as providing flexible
options on how the logic is constructed. For example, a logic language and its
proof rules can be constructed in multiple ways. Specifically, if we want to for-
malize a propositional logic with the following connectives:

→,¬,∨,

we can either follow Elliott Mendelson’s approach [18], i.e. treating → and ¬ as
primitive connectives and defining p ∨ q � ¬p → q, or adopt the method men-
tioned in Ebbinghaus et al.’s book [10], i.e. treating ¬,∨ as primitive connectives
and define p → q � ¬p ∨ q.

Besides, the proof system can be constructed in various ways. We often write
� ϕ if ϕ is provable, and Φ � ϕ if ϕ is derivable from a set of propositions Φ.
When ϕ is derivable from a singleton proposition ψ, which is a rather common
case, we write ψ � ϕ. We wish to formalize these judgements by choosing any
one of them as primitive, and deriving the others.

It seems a possible solution to construct with different modules and type
classes including the parameterized definitions and proofs of different logics.
There are indeed previous works done in this way, e.g., VST-MSL [2], Iris [16,21],
and Math Classes [22]. However, there are drawbacks of such an approach:

– The users need to be familiar with the entire framework to accomplish the
construction. They would have to dig into our design details so that they can
find the proper place-holder of each argument, and choose the classes that
meet their requirements.

– Constructive proofs of proof rules would bring a large overhead. Suppose A,
B and C are types, and we have a model defined as follows.

De f i n i t i o n model : Type := A ∗ B ∗ C.

We aim to build a separation logic on model, and need to instantiate the
following classes:

208 Y. Tao and Q. Cao

Class Join (worlds : Type) := . . .
Class Unit (worlds : Type) := . . .
Class SepAlg (worlds : Type) {J : Join worlds } := . . .
Class UnitJoin (worlds : Type) {U : Unit worlds }

{J : Join worlds } {SA : SepAlg worlds } := . . .

We can build instances on product types with the followings.

In s tance prod J (A B : Type) :
Join A −> Join B −> Join (A ∗ B) := . . .

In s tance prod U (A B : Type) :
Unit A −> Unit B −> Unit (A ∗ B) := . . .

In s tance prod SA (A B : Type) (J A : Join A) (J B : Join B) :
SepAlg A −> SepAlg B −> SepAlg (A ∗ B) := . . .

In s tance prod UJR (A B : Type) (J A : Join A) (J B : Join B)
(U A : Unit A) (U B : Unit B)
(SA A : SepAlg A) (SA B : SepAlg B) :
UnitJoin A −> UnitJoin B −> UnitJoin (A ∗ B) := . . .

It is worth mentioning that there are implicit arguments in the instances.
For example, the true Coq type of prod SA A B J A J B is (@SepAlg A J A)

−> (@SepAlg B J B) −> (@SepAlg (A ∗ B) (prod J A B J A J B)).
The class UnitJoin on A ∗ B ∗ C can be instantiated as follows:

De f i n i t i o n UJR ABC : UnitJoin (A ∗ B ∗ C) :=
prod UJR (A ∗ B) C
(prod UJR A B UJR A UJR B) UJR C .

⇑
The placeholder for the underscore pointed by the arrow should have type
Join A, and we call it J A. We can observe that the instance J A may appear
repeatedly during the process of the entire construction (e.g., it may appear
in the construction of SepAlg on A, A ∗ B, A ∗ B ∗ C, etc..). This phenomenon
causes the size of the construction to be unacceptably large. If more classes
need to be instantiated, the memory taken could be exponentially large.

In order to address the problems above, an automatized logic generator
becomes indispensable. We designed a logic generator that accepts a configura-
tion designated by the user, integrates the required classes of items, and presents
an interface for the construction of logic. The users are not required to know how
the entire class system works. Instead, with the help of the interface, the users
can use the system compositionally and derive the demanded definitions and
proofs. The logic generator frees them from the tedious work of searching for the
correct class and constructing the proof terms themselves. All they need to do,
is writing the configuration, and implementing the primitive items.

Furthermore, we observe that in most applications of program verification,
we use a single logic, whose syntax and proof rules remain unchanged throughout
the process. Since the composition of type classes has already been constructed
by the generator in the whole procedure of use, there is no need to reconstruct the
logic, and thus spares time and memory, which addresses the overhead problem.

LOGIC: A Coq Library for Logics 209

4 Parameterized Definitions and Proofs

As previously mentioned, we will first build a type class based system, and then
establish an auxiliary system on top of it to automatically build instances for
users. However, due to the versatility of logic application scenarios, traditional
applications of type classes do not suffice to solve the problems. Thus, we divide
the type classes into four layers, and make different design choices based on their
applications: (a) languages; (b) connectives and judgements (Sect. 4.1); (c) proof
rules (Sect. 4.2); (d) soundness (Sect. 4.3) and completeness (Sect. 4.4).

Notations in Coq and in this paper. We use “andp x y” to represent the conjunc-
tion of x and y in the logic’s proposition, where “p” stands for “proposition”.
Additionally, Coq’s infrastructure allows us to define a notation for the connec-
tives, judgements. For example, we use “x && y” as an object logics’ notation
to represent “andp x y” in LOGIC, which is distinguished from Coq’s notation
for its own logic, the meta-logic. In this paper, we choose not to use these nota-
tions for conciseness. We will use standard logic notations like ∧, ∨, etc.. for
object languages and use informal English words “and”, “or”, etc.. in the meta
language. For consideration of readability, we will adopt this convention (but
within a box container) when we present Coq code.

4.1 Connectives and Judgements

As mentioned before, we wish to enable various constructions of the same logic
language. We illustrate our design choice using the previously mentioned example
- formalizing a logic with connectives →,¬,∨. We can either select ¬,→ as
primitive connectives and adopt Mendelson’s approach, or select ¬,∨ as primitive
connectives and follow Ebbinghaus et al.’s approach.

Class Mendelson Language := {
expr : Type ;
negp : expr −> expr ;
impp : expr −> expr −> expr ; } .

D e f i n i t i o n Mendelson orp := fun p q => ¬p → q .

C lass Ebbinghaus Language := {
expr : Type ;
negp : expr −> expr ;
orp : expr −> expr −> expr ; } .

D e f i n i t i o n Ebbinghaus impp := fun p q => ¬p ∨ q .

However, since we wish to support both constructions (or even more sophisti-
cated ones) simultaneously, neither of the above methods works. Instead, we define
languages and connectives respectively with different type classes (see below), i.e.,
one type class for the language and one type class for each of the connectives. The
type class does not assume if the connective is primitive or derived. They just indi-
cate the existence and type of the corresponding connective.

210 Y. Tao and Q. Cao

The languages are defined by the following Coq type class. It says that, once
the set of expressions (expr) is defined, the language is defined.

Class Language := { expr : Type } .

Some of the type classes for the connectives are listed as follows.

Class OrLanguage (L : Language) := {orp : expr −> expr −> expr } .
C lass AndLanguage (L : Language) := {andp : expr −> expr −> expr } .
C lass ImpLanguage (L : Language) := { impp : expr −> expr −> expr } .

It is worth mentioning that “OrLanguage L” does not assume disjunction to
be a primitive connective. It can be either a primitive connective or a derived
one. In order to reason about the derivation among connectives, we introduce
refl classes in LOGIC, e.g.

Class OrDef Imp Neg (L : Language) { : ImpLanguage L}
{ : OrLanguage L} { : NegLanguage L} :=

{ impp negp2orp : for any ϕ ψ, ϕ ∨ ψ = ¬ϕ → ψ) } .

In LOGIC, we also have algebraic structures that do not rely on expres-
sions. Instead, they work on the “model-level”, directly showing the relation-
ships between models. These are mostly used to derive higher connectives for
expressions. For example, the algebraic structure join “⊕” is commonly used to
define the separating conjunction “∗”.

Class Join (worlds : Type) : Type :=
j o i n : worlds −> worlds −> worlds −> Prop .

Class SepconLanguage (L : Language) : Type :=
{ sepcon : expr −> expr −> expr } .

In s tance worlds L := Build Language (worlds −> Prop) .
Class SepconDef Join {SepconL : SepconLanguage worlds L } :=

{ j o in2 sepcon : ϕ ∗ ψ = fun w =>

exists w1 w2, ⊕(w1, w2, w) and ϕ w1 and ψ w2 } .

In that sense, separating conjunction can be treated as a derived definition from
join, which means that we do not need to distinguish logic connectives from alge-
braic structures of models in LOGIC. We put such derivations among connectives
and algebraic definitions in one single type class system.

LOGIC supports 7 propositional connectives and constants (∧,∨,→,↔,¬,,
and ⊥), separation logic connectives, and modalities in modal logics, as well as
algebraic structures for defining semantics of intuitionistic propositional logic,
separation logic, and modal logic. For brevity, we only demonstrate a part of
them here.

Besides connectives, LOGIC also encompasses type classes formalizing judge-
ments, built in an analogous manner. For example, provable is a meta-logic prop-
erty of propositional expressions; thus, its Coq type is: expr −> Prop. We also
define logic equivalence, which is useful for different applications.

LOGIC: A Coq Library for Logics 211

Class Provable (L : Language) :=
{ provable : expr −> Prop } . (∗ |−− x ∗)

Class Der ivab le (L : Language) :=
{ de r i v ab l e : s e t o f e x p r −> expr −> Prop } . (∗ X |−−− x ∗)

Class Der ivab le1 (L : Language) :=
{ de r i vab l e 1 : expr −> expr −> Prop } . (∗ x |−− y ∗)

Class LogicEquiv (L : Language) :=
{ l o g i c e q u i v : expr −> expr −> Prop } . (∗ x −−||−− y ∗)

Again, “Provable L” does not assume � ϕ to be a primitive definition. Logicians
may choose either � ϕ or Φ � ϕ as a primitive definition, and derive the other.
Furthermore, computer scientists usually use ϕ � ψ as their primitive nota-
tion in formal program verification projects. LOGIC supports all these different
choices and uses additional type classes to define transformation among them.
The following is an example.

Class Der ivab leProvable
(L : Language) (GammaP: Provable L)
(GammaD: Der ivab le L) { : ImpLanguage L} :=

{ de r i v ab l e p r ovab l e :

for any Φ ϕ, Φ � ϕ iff.

there exists ϕ1, ϕ2, . . . , ϕn ∈ Φ, s.t. � ϕ1 → ϕ2 → · · · → ϕn → ϕ } .

4.2 Proof Rules

Like connectives and judgements, we also define type classes for proof rules,
and portray the derivation between them using Coq lemmas. To illustrate how
these type classes and Coq lemmas are designed, we take separation logic as
an example. When constructing a separation logic, the following three rules
regarding the separating conjunction “∗” are often required:

– SepconComm: for any ϕ ψ, ϕ ∗ ψ � ψ ∗ ϕ;
– SepconAssoc: for any ϕ ψ χ, ϕ ∗ (ψ ∗ χ) � (ϕ ∗ ψ) ∗ χ;
– SepconMono: for any ϕ ψ ϕ′ ψ, if ϕ � ϕ′ and ψ � ψ′, then ϕ ∗ ψ � ϕ′ ∗ ψ′.

If separating implication “−∗” is present, we may have the following proof rule:

– WandSepconAdjoint: for any ϕ ψ χ, ϕ ∗ ψ � χ iff. ϕ � ψ −∗ χ.

It is known that SepconMono can be derived from SepconComm, SepconAs-

soc, and WandSepconAdjoint [8]. We then introduce how the type classes
and Coq lemmas are designed with regard to the above example.

Primary Rule Classes for Internal Use. The followings are the two rule
classes, SepconDeduction and WandDeduction, which serve the internal use of
LOGIC. Notice that there is redundancy within these type classes, i.e. the third
rule in SepconDeduction can be derived by the other three rules. However, it is

212 Y. Tao and Q. Cao

still listed as a primary rule since some separation logic does not have separating
implication “−∗” in its language. Furthermore, as is the case in all primary rule
classes for internal use, the dependency among them exhibits a clear hierarchy.

Class SepconDeduction (L : Language) (GammaD1 : Der ivab le1 L)
{ : SepconLanguage} :=

{ sepcon comm : for any ϕ ψ, ϕ ∗ ψ � ψ ∗ ϕ ;

s epcon as soc : for any ϕ ψ χ, ϕ ∗ (ψ ∗ χ) � (ϕ ∗ ψ) ∗ χ ;

sepcon mono : for any ϕ ψ ϕ′ ψ, if ϕ � ϕ′ and ψ � ψ′, then ϕ ∗ ψ � ϕ′ ∗ ψ′ } .

C lass WandDeduction (L : Language) (GammaD1 : Der ivab le L)
{ : SepconLanguage L} { : WandLanguage L} :=

{ wand sepcon adjo int : for any ϕ ψ χ, ϕ ∗ ψ � χ iff. ϕ � ψ −∗ χ } .

With the rule classes above, we can construct parameterized proofs of
other rules. For example, the monotonicity of separating implication “−∗” is
derivable from the given context, including the basic properties of judgement
BasicDeduction and WandDeduction shown above. This is formalized in the fol-
lowing lemma.

Lemma derivable1 wand mono : f o r a l l {L : Language}
{ sepconL : SepconLanguage L} {wandL : WandLanguage L}
{GammaD1 : Der ivab le L} {bD : BasicDeduction L GammaD1}
{wandD : WandDeduction L GammaD1} ,

for any ϕ1 ϕ2 ψ1 ψ2, if ϕ2 � ϕ1 and ψ2 � ψ1, then ϕ1 −∗ ψ1 � ϕ2 −∗ ψ2

Rule Classes for Users’ Construction. There are three type classes for
users’ construction concerning the above separation logic example, which are
listed as follows. This allows users to be flexible in constructing the logics. If the
desired logic does not involve separating implication “−∗”, the user can select
SepconDeduction Weak and SepconDeduction Mono as the primary rule classes.
Otherwise, SepconDeduction Weak and WandDeduction can be selected as primary
rule classes for the logic, so that the rule SepconMono can be automatically
derived. Among these type classes, there is no redundancy so that users can use
whatever type class they demand without worrying about repetitive proofs.

Class SepconDeduction Weak (L : Language) (GammaD1 : Der ivab le1 L)
{ : SepconLanguage} :=

{ sepcon comm : for any ϕ ψ, ϕ ∗ ψ � ψ ∗ ϕ ;

s e p c on a s s o c : for any ϕ ψ χ, ϕ ∗ (ψ ∗ χ) � (ϕ ∗ ψ) ∗ χ } .

C lass SepconDeduction Mono (L : Language) (GammaD1 : Der ivab le1 L)
{ : SepconLanguage} :=

{ sepcon mono : for any ϕ ψ ϕ′ ψ, if ϕ � ϕ′ and ψ � ψ′, then ϕ ∗ ψ � ϕ′ ∗ ψ′ } .

C lass WandDeduction (L : Language) (GammaD1 : Der ivab le L)
{ : SepconLanguage L} { : WandLanguage L} :=

{ wand sepcon adjo int : for any ϕ ψ χ, ϕ ∗ ψ � χ iff. ϕ � ψ −∗ χ } .

LOGIC: A Coq Library for Logics 213

Constructing Primary Rules from Inputs. In LOGIC, the derivation
between rule classes is depicted using Coq lemmas, which allows constructing the
primary rules with the input proofs of users. For example, the following lemma
says that SepconMono is derivable once SepconComm, SepconAssoc (given
in type class SpeconDeduction Weak), and WandSepconMono (given in type
class WandDeduction) have been proved.

Lemma WeakAdjoint2Mono :
f o r a l l {L : Language} {GammaD1 : Der ivab le1 L}
{ : SepconLanguage L} { : WandLanguage L}
{ : SepconDeduction Weak L GammaD1}
{ : WandDeduction L GammaD1} ,
SepconDeduction Mono L GammaD1.

Rules for Derived Connectives. Another use of Coq lemmas in LOGIC lies in
the syntactic sugars of connectives and judgements. As is described in Sect. 4.1,
LOGIC supports using syntactic sugars to define new connectives (judgements)
from primitive ones. We show that we can use these derived connectives and
judgements when proving inner theorems or derived rules as if they are primi-
tive concepts. For example, OrFromDefToAx Imp Neg proves that disjunction will
have its introduction rule and elimination rule if it is defined as ϕ∨ψ � ¬ϕ → ψ.

4.3 Semantics and Soundness

Double turnstile “· � ·” usually describes a satisfaction relation, while its left
side may vary in accordance with the semantics. Thus, we use Coq type classes
to parameterize over different possibilities.

Class Model := {model : Type } .
C lass Semantics (L : Language) (MD : Model) :=

{ denotat ion : expr −> model −> Prop } .

That is: a semantics is defined as long as a denotation function maps every
propositional expression to a subset of “models”, the set of models where it is
satisfied. Here, the “model” set, which may be different in different semantics,
is defined by type class Model. Based on Model and Semantics, we can define
semantics of different connectives. For example, “AndSemantics L MD SM” says
SM is a semantics defining on language L and models MD; this language has at
least one connective, conjunction; and ϕ∧ψ is satisfied if and only if both ϕ and
ψ is satisfied for any ϕ and ψ.

Class AndSemantics (L : Language) { : AndLanguage L}
(MD: Model) (SM: Semantics L MD) :=

{denote andp : for any m ϕ ψ, m � ϕ ∧ ψ iff. m � ϕ and m � ψ } .

Typically, a logic’s soundness is proved by induction over proof trees and
it suffices to prove that all primary proof rules preserve validity. We achieve
proof reuse in LOGIC by formalizing these validity preservation lemmas, under
parameterized assumptions over semantic definitions. For example, the validity
preservation of ModusPonens is formalized in the following lemma.

214 Y. Tao and Q. Cao

Lemma sound modus ponens :
f o r a l l {L : Language} {MD: Model} {kMD: KripkeModel MD}

{M: Kmodel} {SM: Semantics L MD}
{ : ImpLanguage L} { : IL . Re lat ion (Kworlds M)}
{ : K r i pk e I n tu i t i o n i s t i c S eman t i c s L MD M SM}
{ : KripkeImpSemantics L MD M SM} ,

for any ϕ ψ, if ϕ → ψ and ϕ are valid on M, then ψ is valid on M .

4.4 Completeness

Completeness proofs are usually more complicated than simple inductions on
proof trees. In LOGIC, we leverage a Henkin-style completeness proof, which
consists of the following steps.2

– Proof by contradiction: assume Φ �� ϕ.
– Lindenbaum construction: find a “good” set Ψ such that Ψ ⊇ Φ and Ψ �� ϕ.
– Canonical model construction: define a Kripke model Mc whose possible

worlds are all “good” sets.
– Truth lemma: prove that for any Θ and θ, Mc, Θ � θ if and only if θ ∈ Θ.
– Achieving contradiction: Φ �� ϕ, since Mc, Ψ � Φ but Mc, Ψ �� ϕ.

Parameterized Lindenbaum Construction. The target of Lindenbaum con-
struction is to find a super set Ψ ⊇ Φ (given Φ) such that F(Ψ). Lindenbaum
constructions always follow this routine:

Φ0 = Φ, Ψ =
⋃

n Φn

Φn+1 = Φn ∪ ϕn if Φn ∪ ϕn has property G
Φn+1 = Φn if Φn ∪ ϕn does not have property G
where {ϕn|n ∈ N} are all propositions.

(2)

In LOGIC, we first formalize the Lindenbaum construction process in (2) as: Ψ =
LC(Φ,G). Then all Lindenbaum construction lemmas share the same format: for
any Φ, if G(Φ), then F(LC(Φ,G)). We call it LLS(F ,G), where LLS stands for
Lindenbaum Lemma Statement. It is worth clarifying that LLS(F ,G)’s definition
only depends on languages but does not depend on proof theories or semantics.
Only when instantiating F and G with concrete sets of propositions, a proof
theory would be needed in their definitions. We prove in Coq that LLS(F ,G) is
compositional on F (Lindenbaum by conj). Additionally, we prove some general
lemmas like Lindenbaum self by finiteness and Lindenbaum derivable closed for F ’s
common conjuncts.

2 There has been previous work formalizing completeness of first-order logic [11]. We
partially base our work on [8]. We significantly improve proof reuse and support
more completeness proofs.

LOGIC: A Coq Library for Logics 215

Lemma Lindenbaum by conj {L : Language } :

for any F1, F2, and G, if LLS(F1, G) and LLS(F2, G), then LLS(F1 and F2, G) .

Lemma L indenbaum se l f by f i n i t en e s s {L : Language } :

for any G, if G is finite-captured and subset-preserved, then LLS(G, G) .

Lemma Lindenbaum der ivab le c losed {L : Language} {Gamma: Der ivab le L} :

for any G, if G ◦ ∂ is subset-preserved and LLS(G, G), then LLS(derivable-closed, G) .

Coro l l a ry Lindenbaum cannot derive {L : Language} {Gamma: Der ivab le L} :

for any G ϕ, if G(Φ) has form Φ �� ϕ for any Φ, then LLS(derivable-closed, G) .

Here, a property G is finite-captured means: for any Φ, if Φ’s every finite subset
has property G, then Φ itself has property G; a property G is subset-preserved
means: for any Φ ⊇ Ψ , if G(Φ) then G(Ψ); and ∂ is a function from proposition
sets to proposition sets such that ∂(Φ) = {ϕ | Φ � ϕ}. Based on Coq’s higher
order feature, we are able to define concepts like finite-captured and use them
in the lemmas above. As a result, we do not need to duplicate proofs in Coq for
different Lindenbaum constructions.

Parameterized Well-Definedness. In Henkin-style proofs, we need to prove
that the canonical model is indeed a legal model. For example, in separation
logic’s completeness proof, we should check whether the join relation is commu-
tative in the canonical model, i.e. joinc(Φ, Ψ,Θ) if and only if joinc(Ψ,Φ,Θ) for
any “good” sets Φ, Ψ and Θ. Here, joinc is the join relation in the canonical
model, which is usually defined as:

joinc(Φ, Ψ,Θ) iff. Φ ∗ Ψ ⊆ Θ.

According to the definition of Φ ∗ Ψ , its proof is very straight forward since
� ϕ∗ψ ↔ ψ∗ϕ. However, its formalization is nontrivial since different separation
logics’ completeness may choose different definitions of “good”. For classical
separation logics, a “good” set is a maximal consistent set. For intuitionistic
separation logics without disjunction (∨) or false (⊥), a “good” set is a derivable-
closed set. For intuitionistic separation logics with disjunction (∨) and false
(⊥), a “good” set is a derivable-closed, disjunction-witnessed, consistent set. In
LOGIC, we prove the following general statement of joinc’s commutativity.

Lemma canonical comm :
f o r a l l {L : Language} {GammaD : Der ivab le L} { : SepconLanguage L}

{ : Bas icSequentCalcu lus L GammaD}
{ : SepconSequentCalculus L GammaD} ,

if every “good” set is derivable-closed, then joinc is commutative .

The main idea is: we do not prove a theorem for a specific definition of “good”
sets; instead, we consider a general class of “good” sets. We use this method in
many places in LOGIC for proving canonical model well-formed.

216 Y. Tao and Q. Cao

Parameterized Truth Lemma. Truth lemmas are usually proved by induc-
tion over propositions’ syntax trees. For proof reuse, we formalize different induc-
tion steps separately for proof reuse as we do in soundness proofs (see Sect. 4.3).
For example, the induction step of conjunction is to prove:

If for any Θ,Mc, Θ � ϕ iff. ϕ ∈ Θ
and for any Θ,Mc, Θ � ψ iff. ψ ∈ Θ,
then for any Θ,Mc, Θ � ϕ ∧ ψ iff. ϕ ∧ ψ ∈ Θ.

Of course, the conclusion above is true only under some specific assumptions
about “good” sets and canonical model’s structures. We prove these lemmas
based on relaxed classes of “good” sets again as we do before.

In summary, we decompose Henkin-style completeness proofs into small steps
so that these intermediate conclusions can be proved in a parameterized way.
We heavily use Coq’s higher order logic in these generalized proofs. Readers
can check our Coq development and see how we can easily combine components
together and achieve formalized completeness proofs for concrete logics.

5 Logic Generator

We have in LOGIC a logic generator, which uses the parameterized definitions
and proofs to support generating and exporting the desired logic libraries, so as
to untangle the problems mentioned in Sect. 3. In Sect. 5.1, we introduce how
users can leverage the logic generator to generate an exportable library of logic
according to their requirements. In Sect. 5.2, we explain how the logic generator
is implemented to perform the desired features.

5.1 Features of Logic Generator

In order to build a logic system (including its connectives, judgements, and proof
rules) based on LOGIC’s generator, one needs to take the following three steps.
First of all, a configuration file is set up by the user indicating their logic’s
primitive connectives, judgements, and primary proof rules, as well as how the
other primitives and judgements are derived. For example, if we want to formalize
Mendelson’s propositional logic, the configuration should be written as follows.

De f i n i t i o n how connect ives :=
[p r im i t i v e c onne c t i v e impp ;

p r im i t i v e c onne c t i v e negp ;
FROM impp negp TO orp] .

D e f i n i t i o n how judgements :=
[pr imit ive judgement provable ;

FROM provable TO derivable1] .
D e f i n i t i o n p r i m i t i v e r u l e c l a s s e s :=
[provabi l i ty OF impp ;

p r o v a b i l i t y OF c l a s s i c a l l o g i c b y c o n t r a] .

The configuration above specifies the followings about the desired logic.

LOGIC: A Coq Library for Logics 217

– There are three connectives in the logic’s language: implication “→”, negation
“¬”, and disjunction “∨”, where the first two are primitive, and the third one
is derived by ϕ ∨ ψ � ¬ϕ → ψ.

– There are two judgements in the logic’s proof system: provable “ � ·” and
derivable1 “· � ·”, where the former is primitive, and the latter is derived by
ϕ � ψ � � ϕ → ψ.

– The primitive proof rules of the logic include the followings, where the first
three are basic proof rules for implication “→”, and the fourth is the contra-
diction rule.

• ModusPones: for any ϕ ψ, if � (ϕ → ψ) and � ϕ, then � ψ.
• Axiom1: for any ϕ ψ, � (ϕ → (ψ → ϕ)).
• Axiom2: for any ϕ ψ χ, � ((ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ)).
• ByContradiction: for any ϕ ψ, � (¬ϕ → ψ) → (¬ϕ → ¬ψ) → ϕ.

Then the logic generator takes the configuration as input, and outputs an
interface file, which includes Coq module types illustrating primitive connectives,
judgements and rules that users need to provide, and Coq functors that derive
derived connectives, derived judgements and derived proof rules. The primitive
types, connectives and judgements are included in the module type LanguageSig,
which only indicates the types, and is to be implemented by the user.

Module Type LanguageSig .
Parameter I n l i n e expr : Type .
Parameter provable : (expr −> Prop) .
Parameter impp : (expr −> expr −> expr) .
Parameter negp : (expr −> expr) .

End LanguageSig .
(∗ Automatica l ly generated ∗)

Analogously, the primary rules are included in another module type
PrimitiveRuleSig, also to be proved by the user.

Module Type Pr imi t iveRuleS ig (Names : LanguageSig) .
Inc lude DerivedNames (Names) .

Axiom by con t r ad i c t i on : for any ϕ ψ, � (¬ϕ → ψ) → (¬ϕ → ¬ψ) → ϕ .

Axiom modus ponens : for any ϕ ψ, if � (ϕ → ψ) and � ϕ, then � ψ .

Axiom axiom1 : for any ϕ ψ, � (ϕ → (ψ → ϕ)) .

Axiom axiom2 : for any ϕ ψ χ, � ((ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ)) .

End Pr imi t iveRuleS ig .
(∗ Automatica l ly generated ∗)

All the proof rules that can be derived using the primary ones are included
in the module LogicTheorems. To give a taste of what are the rules that can be
derived, we list some of the rules included in LogicTheorems.

– Derivable1Refl: for any ϕ, ϕ � ϕ;
– Derivable1Trans: for any ϕ ψ χ, if ϕ � ψ and ψ � χ, then ϕ � χ;
– Impp2Orp1: for any ϕ ψ,� (ϕ → ψ) → (¬ϕ ∨ ψ);

218 Y. Tao and Q. Cao

– PeirceLaw: for any ϕ ψ,� ((ϕ → ψ) → ϕ) → ϕ.

The first two of the above are included because the judgement derivable1 is
derived by provable according to LOGIC’s internal type classes. The third follows
from an analogous reason. The fourth is included because we have the primary
rule class provability OF classical logic by contra making the given logic a classi-
cal logic, and there are internal lemmas that ensure such derivation is valid.

Guided by the interface file, the users need to provide concrete definitions
of primitive connectives and judgements, and proofs of primary rules. These
are done in an implementation file. LOGIC supports implementation of both
deep embeddings (defining propositions by syntax trees) and shallow embeddings
(defining propositions as the set of worlds where it is satisfied, without using
syntax trees). If shallow embedding is employed, the implementation of primitive
connectives and judgements can be written as follows.

Module NaiveLang .
De f i n i t i o n expr := worlds −> Prop .

De f i n i t i o n impp (x y : expr) : expr := fun m => if x m, then y m .

D e f i n i t i o n negp (x : expr) : expr := fun m => not x m .

D e f i n i t i o n provable (x : expr) : Prop := for any m, x m .

End NaiveLang .

Alternatively, if the user chooses to apply a deep embedding, the proposition
(expr) should be defined as a syntax tree, as shown below. Here, an expr can
be constructed in three different ways, corresponding to the two primitive con-
nectives and the atom var, and provable can be derived in three different ways,
corresponding to the four primitive rules.

Induct ive expr : Type :=
| impp : expr −> expr −> expr
| negp : expr −> expr
| varp : var −> expr .

Induct ive provable : expr −> Prop :=

| modus ponens : for any ϕ ψ, if � (ϕ → ψ) and � ϕ, then � ψ

| axiom1 : for any ϕ ψ, � (ϕ → (ψ → ϕ))

| axiom2 : for any ϕ ψ χ, � ((ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ)) .

| by con t r ad i c t i on : for any ϕ ψ, � (¬ϕ → ψ) → (¬ϕ → ¬ψ) → ϕ .

Module NaiveLang .
De f i n i t i o n expr := expr .
De f i n i t i o n impp := impp .
De f i n i t i o n negp := negp .
De f i n i t i o n provable := provable .

End NaiveLang .

No matter what kind of embedding is used, the primary rules need to be proved.

LOGIC: A Coq Library for Logics 219

Module NaiveRule .
Inc lude DerivedNames (NaiveLang) .
Lemma by con t r ad i c t i on : . . . Proof Qed .
Lemma modus ponens : . . . Proof Qed .
Lemma axiom1 : . . . Proof Qed .
Lemma axiom2 : . . . Proof Qed .

Once these are done, an exported library is ready. We have many examples of
using the logic generator, which we list in the appendix.

5.2 Design of Logic Generator

Here is a brief sketch of our design: we put all connectives, judgements and
primary proof rules that we support in LOGIC into a built-in list; we record
dependencies among them with a dependency graph; and we compute all deriv-
able connectives, judgements and rules from user’s input (the configuration file)
based on this graph. The dependencies we document in the dependency graph
involve the followings:

– The dependency between connectives, judgements. For example, specifying
FROM impp negp TO orp in the list how connectives depends on the connec-
tives injunction “→” and negation “¬”.

– The dependency between rules. This is computed internally in the logic gen-
erator. For example, the derived rules of some connectives’ properties depend
on the users’ input rules and the derivation of the connectives.

It is worth mentioning that the dependency graph is not typed into our source
code manually, we develop a Coq tactic to analyze dependent types of Coq terms
and use that tactic to generate the graph automatically. With the dependency
lists and computations mentioned above, we are ready to generate and print the
interface according to the configuration given by the users.

6 Related Work

We are not the first one to formalize logic studies in theorem provers. Blanchette
et al. formalized FOL completeness in Isabelle/HOL using its codata type. Foster
et al. formalized FOL completeness [11] and undecidability [12] in Coq. Tews [23]
formalized cut elimination for propositional multi-modal logics in Coq. There are
many other works that we do not have space to enumerate here. Comparing to
these previous work, we do not yet support first order quantifiers but we are the
first one who systematically support different choices of primitive connectives
(not fixing the set of connectives), logic extension (not fixing the set of primary
proof rules) and compositional proof formalization (especially for completeness).

If using shallow embeddings in formalization, logics are extensible since there
is no limitation on which connectives can/cannot be involved. Jensen [14] formal-
ized soundness theorems for a wide range of separation logic and their semantics.
Benzmüller and Paleo [5] formalized shallowly embedded modal logics in Coq

220 Y. Tao and Q. Cao

and formalized G̈odel’s ontological argument based on that. Henz and Hobor [13]
taught propositional modal using a formalization in Coq. The famous formalized
text book Software Foundations [20] uses shallow embeddings to formalize asser-
tions and Hoare logics. However, these works limit themselves in using shallow
embedding, thus completeness proofs cannot be formalized in their framework.

Many research groups have developed different program verification tools
based on theorem provers. Benzmuller and Claus [4] formalized higher-order
multi-modal logic in Isabelle using shallow embedding and provide a proof
automation library in Isabelle. VST [1,7] enables users to prove C programs
correct using a shallowly embedded impredicative higher-order concurrent sep-
aration logic with a semi-automatic tactic library. Bedrock [9] are designed for
low level program verification. Iris proof mode (IPM) [17] provides a tactic
library for building interactive separation logic proofs. None of these verifica-
tion projects can be applied to different (but similar) logics like LOGIC if not
causing any overhead. For example, IPM’s users should provide instances for
IPM’s BI type class and affined-BI type class, which causes some overhead. VST
uses a rich enough memory model for C so that it can use a fixed Coq type
“environ −> mpred” for C programs’ assertion language. However, some of its
proof rules are proved sound using a general separation logic framework VST-
MSL. Thus, this generalization-instantiation process causes overhead in some of
its proof automation. In comparison, LOGIC supports parameterized reasoning
for internal proofs and exports proof libraries with no efficiency overhead.

7 Conclusion

In this paper, we present LOGIC which formalizes logics’ meta-theories and can be
used to generate exportable logic libraries. For formalized meta-theories, LOGIC is
the first to support different logic settings (like primitive connectives and primary
proof rules) in one uniform system. It also provides support for compositionally
building completeness proofs. For logic applications, LOGIC aims to provide multi-
scenario support with proof automation tactics and related proof rules. For exam-
ple, users would like to have a rich language, a powerful logic and efficient proof
construction commands in real program verification. But for educational purpose,
a teacher may prefer to use a simple logic to explain the key ideas involved. LOGIC
can export libraries for both scenarios according to users’ configuration.

Acknowledgement. This research is sponsored by National Natural Science founda-
tion of China (NSFC) Grant No. 61902240.

A Sample Use Cases of Logic Generator

A.1 Demo1: Intuitionistic Propositional Logic

Primitive connectives: →,∧,∨,⊥.
Syntactic sugar for connectives: ϕ ↔ ψ � (ϕ → ψ) ∧ (ψ → ϕ), ¬ϕ � ϕ → ⊥,
 � ⊥ → ⊥.

LOGIC: A Coq Library for Logics 221

Primitive judgements: provable (� ϕ).
Syntactic sugar for judgements: for any Φ ϕ, Φ � ϕ iff. exists ϕ1, ϕ2, . . . , ϕn ∈
Φ, s.t. � ϕ1 → ϕ2 → · · · → ϕn → ϕ.
Primary rules:

– PeirceLaw: for any ϕ ψ, � ((ϕ → ψ) → ψ) → ψ;
– FalsepElim: for any ϕ, � ⊥ → ϕ;
– OrpIntros1: for any ϕ ψ, � ϕ → (ϕ ∨ ψ);
– OrpIntros2: for any ϕ ψ, � ψ → (ϕ ∨ ψ);
– OprElim: for any ϕ ψ χ, � (ϕ → χ) → (ψ → χ) → ((ϕ ∨ ψ) → χ);
– AndpIntros: for any ϕ ψ, � ϕ → ψ → (ϕ ∧ ψ);
– AndpElim1: for any ϕ ψ, � (ϕ ∧ ψ) → ϕ;
– AndpElim2: for any ϕ ψ, � (ϕ ∧ ψ) → ψ;
– ModusPones: for any ϕ ψ, if � ϕ → ψ and � ϕ, then � ψ;
– Axiom1: for any ϕ ψ, � ϕ → (ψ → ϕ);
– Axiom2: for any ϕ ψ χ, � (ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ).

A.2 Demo2: A Very Small Logic

Primitive connectives: →.
Primitive judgements: provable (� ϕ).
Primary rules:

– ModusPones: for any ϕ ψ, if � ϕ → ψ and � ϕ, then � ψ;
– Axiom1: for any ϕ ψ, � ϕ → (ψ → ϕ);
– Axiom2: for any ϕ ψ χ, � (ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ).

A.3 Demo3: Intuitionistic Propositional Logic

Primitive connectives: →,∧,∨,⊥.
Syntactic sugar for connectives: ϕ ↔ ψ � (ϕ → ψ) ∧ (ψ → ϕ), ¬ϕ � ϕ → ⊥,
 � ⊥ → ⊥,

∧n
i=1 ϕi � ϕ1 ∧ . . . ∧ ϕn.

Primitive judgements: derivable Φ � ϕ.
Syntactic sugar for judgements: for any ϕ, � ϕ iff. ∅ � ϕ.
Primary rules:

– DedFalsepElim: for any Φ ϕ, if Φ � ⊥, then Φ � ϕ;
– DedOrpIntros1: for any Φ ϕ ψ, if Φ � ϕ, then Φ � ϕ ∨ ψ;
– DedOrpIntros1: for any Φ ϕ ψ, if Φ � ψ, then Φ � ϕ ∨ ψ;
– DedOrpElim: for any Φ ϕ ψ χ, if Φ∪ϕ � χ and Φ∪ψ � χ, then Φ∪(ϕ∨ψ) �

χ;
– DedAndpIntros: for any Φ ϕ ψ, if Φ � ϕ and Φ � ψ, then Φ � ϕ ∧ ψ;
– DedAndpElim1: for any Φ ϕ ψ, if Φ � ϕ ∧ ψ, then Φ � ϕ;
– DedAndpElim2: for any Φ ϕ ψ, if Φ � ϕ ∧ ψ, then Φ � ψ;
– DedModusPonens: for any Φ ϕ ψ, if Φ � ϕ and Φ � ϕ → ψ, then Φ � ψ;
– DedImppIntros: for any Φ ϕ ψ, if Φ ∪ ϕ � ψ, then Φ � ϕ → ψ;
– DedWeaken: for any Φ Ψ ϕ, if Φ is included in Ψ and Φ � ϕ, then Ψ � ϕ;
– DedAssum: for any Φ ϕ, if ϕ belongs to Φ, then Φ � ϕ;
– DedSubst: for any Φ Ψ ψ, if (for any ϕ, if ϕ belongs to Ψ, then Φ �

ϕ) and Φ ∪ Ψ � ψ, then Φ � ψ.

222 Y. Tao and Q. Cao

A.4 Demo4: Separation Logic, Without Separation Conjunction

Primitive connectives: ∧,∨,⊥,, ∗, emp.
Syntactic sugar for connectives:

∧n
i=1 ϕi � ϕ1 ∧ . . . ∧ ϕn, ∗n

i=1ϕi � ϕ1 ∗ . . . ∗ ϕn.
Primitive judgements: derivable1 ϕ � ψ.
Primary rules:

– FalsepSepconLeft: for any ϕ, ⊥ ∗ ϕ � ⊥;
– OrpSepconLeft: for any ϕ ψ χ, (ϕ ∨ ψ) ∗ χ � (ϕ ∗ χ) ∨ (ψ ∗ χ);
– SepconEmpLeft: for any ϕ, ϕ ∗ emp � ϕ;
– SepconEmpRight: for any ϕ, ϕ � ϕ ∗ emp;
– Der1SepconComm: for any ϕ ψ, ϕ ∗ ψ � ψ ∗ ϕ;
– Der1SepconAssoc1: for any ϕ ψ χ, ϕ ∗ (ψ ∗ χ) � (ϕ ∗ ψ) ∗ χ;
– Der1SepconMono: for any ϕ1 ϕ2 ψ1 ψ2, if ϕ1 � ϕ2 and ψ1 �

ψ2, then (ϕ1 ∗ ψ1) � (ϕ2 ∗ ψ2);
– Der1TruepIntros: for any ϕ, ϕ � ;
– Der1FalsepElim: for any ϕ,⊥ � ϕ;
– Der1OrpIntros1: for any ϕ ψ, ϕ � ϕ ∨ ψ;
– Der1OrpIntros2: for any ϕ ψ, ψ � ϕ ∨ ψ;
– Der1OrpElim: for any ϕ ψ χ, if ϕ � χ and ψ � χ, then ϕ ∨ ψ � χ;
– Der1AndpIntros: for any ϕ ψ χ, if ϕ � ψ and ϕ � χ, then ϕ � ψ ∧ χ;
– Der1AndpElim1: for any ϕ ψ, ϕ ∧ ψ � ϕ;
– Der1AndpElim2: for any ϕ ψ, ϕ ∧ ψ � ψ.

A.5 Demo5: Separation Logic, with Separating Conjunction

Primary connectives: →,∧,∨,⊥, ∗,−∗, emp.
Syntactic sugar for connectives: ϕ ↔ ψ � (ϕ → ψ) ∧ (ψ → ϕ), ¬ϕ � ϕ → ⊥,
 � ⊥ → ⊥,

∧n
i=1 ϕi � ϕ1 ∧ . . . ∧ ϕn, ∗n

i=1ϕi � ϕ1 ∗ . . . ∗ ϕn.
Primitive judgements: provable (� ϕ).
Syntactic sugar for judgements: for any Φ ϕ, Φ � ϕ iff. exists ϕ1, ϕ2, . . . , ϕn ∈
Φ, s.t. � ϕ1 → ϕ2 → · · · → ϕn → ϕ.
Primary rules:

– SepconEmp: for any ϕ, � (ϕ ∗ emp) ↔ ϕ;
– SepconComm: for any ϕ ψ, � (ϕ ∗ ψ) ↔ (ψ ∗ ϕ);
– SepconAssoc: for any ϕ ψ χ, � ((ϕ ∗ ψ) ∗ χ) ↔ (ϕ ∗ (ψ ∗ χ));
– WandSepconAdjoint: for any ϕ ψ χ, � ((ϕ ∗ ψ) → χ) ↔ (ϕ → (ψ −∗ χ));
– PeirceLaw: for any ϕ ψ, � ((ϕ → ψ) → ψ) → ψ;
– FalsepElim: for any ϕ, � ⊥ → ϕ;
– OrpIntros1: for any ϕ ψ, � ϕ → (ϕ ∨ ψ);
– OrpIntros2: for any ϕ ψ, � ψ → (ϕ ∨ ψ);
– OprElim: for any ϕ ψ χ, � (ϕ → χ) → (ψ → χ) → ((ϕ ∨ ψ) → χ);
– AndpIntros: for any ϕ ψ, � ϕ → ψ → (ϕ ∧ ψ);
– AndpElim1: for any ϕ ψ, � (ϕ ∧ ψ) → ϕ;
– AndpElim2: for any ϕ ψ, � (ϕ ∧ ψ) → ψ;
– ModusPones: for any ϕ ψ, if � ϕ → ψ and � ϕ, then � ψ;
– Axiom1: for any ϕ ψ, � ϕ → (ψ → ϕ);
– Axiom2: for any ϕ ψ χ, � (ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ).

LOGIC: A Coq Library for Logics 223

A.6 Demo6: Separation Logic, Without Separating Implication

Primitive connectives: →,∧, ∗, emp.
Syntactic sugar for connectives: ϕ ↔ ψ � (ϕ → ψ) ∧ (ψ → ϕ).
Primitive judgement: provable (� ϕ).
Syntactic sugar for judgements: for any Φ ϕ, Φ � ϕ iff. exists ϕ1, ϕ2, . . . , ϕn ∈
Φ, s.t. � ϕ1 → ϕ2 → · · · → ϕn → ϕ;
for any ψ ϕ, ψ �� ϕ iff. � ψ → ϕ and � ϕ → ψ.
Primary rules:

– SepconEmp: for any ϕ, � (ϕ ∗ emp) ↔ ϕ;
– SepconComm: for any ϕ ψ, � (ϕ ∗ ψ) ↔ (ψ ∗ ϕ);
– SepconAssoc: for any ϕ ψ χ, � ((ϕ ∗ ψ) ∗ χ) ↔ (ϕ ∗ (ψ ∗ χ));
– SepconMono: for any ϕ1 ϕ2 ψ1 ψ2, if � ϕ1 → ϕ2 and � ψ1 → ψ2, then �

(ϕ1 ∗ ψ1) → (ϕ2 ∗ ψ2);
– AndpIntros: for any ϕ ψ, � ϕ → ψ → (ϕ ∧ ψ);
– AndpElim1: for any ϕ ψ, � (ϕ ∧ ψ) → ϕ;
– AndpElim2: for any ϕ ψ, � (ϕ ∧ ψ) → ψ;
– ModusPones: for any ϕ ψ, if � ϕ → ψ and � ϕ, then � ψ;
– Axiom1: for any ϕ ψ, � ϕ → (ψ → ϕ);
– Axiom2: for any ϕ ψ χ, � (ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ).

A.7 Demo7: Separation Logic, Constructed from Model Level

Primitive connectives: ⊕,unit.
Syntactic sugar for connectives: define →,∧,∨ directly from model level, using
Coq’s meta-logic; (ϕ ∗ ψ) m � exists m1 m2, ⊕(m1,m2,m) and ϕ m and ψ m;
emp m � unit m.
Syntactic sugar for judgements: define provable (� ϕ) and derivable1 (ϕ � ψ)
with Coq’s meta-logic.
Primary rules:

– JoinComm: for any m1 m2 m, if ⊕ (m1,m2,m), then ⊕ (m2,m1,m);
– JoinAssoc: for any m1 m2 m3 m12 m123, if ⊕ (m1,m2,m12) and ⊕

(m12,m3,
m123), then (there exists m23, ⊕(m2,m3,m23) and ⊕ (m1,m23,m123)).

A.8 Mendelson’s Propositional Logic

Primitive connectives: →,¬,.
Syntactic sugar for connectives: ϕ ∨ ψ � ¬ϕ → ψ, ⊥ � ¬.
Primitive judgements: provable (� ϕ).
Syntactic sugar for judgements: for any Φ ϕ, Φ � ϕ iff. exists ϕ1, ϕ2, . . . , ϕn ∈
Φ, s.t. � ϕ1 → ϕ2 → · · · → ϕn → ϕ.
Primary rules:

224 Y. Tao and Q. Cao

– ByContradiction: for any ϕ ψ, � (¬ϕ → ψ) → (¬ϕ → ¬ψ) → ϕ.
– ModusPones: for any ϕ ψ, if � ϕ → ψ and � ϕ, then � ψ;
– Axiom1: for any ϕ ψ, � ϕ → (ψ → ϕ);
– Axiom2: for any ϕ ψ χ, � (ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ).

We have proved in Coq the completeness of this logic.

A.9 Minimum Separation Logic

Primitive connectives: →,∧, ∗.
Primitive judgements: provable (� ϕ).
Syntactic sugar for judgements: for any Φ ϕ, Φ � ϕ iff. exists ϕ1, ϕ2, . . . , ϕn ∈
Φ, s.t. � ϕ1 → ϕ2 → · · · → ϕn → ϕ.
Primary rules:

– SepconCommImpp: for any ϕ ψ, � (ϕ ∗ ψ) → (ψ ∗ ϕ);
– SepconAssoc1: for any ϕ ψ χ, � (ϕ ∗ (ψ ∗ χ)) → ((ϕ ∗ ψ) ∗ χ);
– SepconMono: for any ϕ1 ϕ2 ψ1 ψ2, if � ϕ1 → ϕ2 and � ψ1 → ψ2, then �

(ϕ1 ∗ ψ1) → (ϕ2 ∗ ψ2);
– AndpIntros: for any ϕ ψ, � ϕ → ψ → (ϕ ∧ ψ);
– AndpElim1: for any ϕ ψ, � (ϕ ∧ ψ) → ϕ;
– AndpElim2: for any ϕ ψ, � (ϕ ∧ ψ) → ψ;
– ModusPones: for any ϕ ψ, if � ϕ → ψ and � ϕ, then � ψ;
– Axiom1: for any ϕ ψ, � ϕ → (ψ → ϕ);
– Axiom2: for any ϕ ψ χ, � (ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ).

We have proved in Coq the completeness of this logic.

A.10 Demo for Bedrock2’s Separation Logic

Primitive connectives: →,∧, ∗, emp.
Syntactic sugar for connectives: ϕ ↔ ψ � (ϕ → ψ) ↔ (ψ → ϕ).
Primitive judgements: provable (� ϕ).
Syntactic sugar for judgements: for any ψ ϕ, ψ � ϕ iff. � ψ → ϕ;
for any ψ ϕ, ψ �� ϕ iff. � ψ → ϕ and � ϕ → ψ.
Primary rules:

– SepconEmp: for any ϕ, � (ϕ ∗ emp) ↔ ϕ;
– SepconComm: for any ϕ ψ, � (ϕ ∗ ψ) ↔ (ψ ∗ ϕ);
– SepconAssoc: for any ϕ ψ χ, � ((ϕ ∗ ψ) ∗ χ) ↔ (ϕ ∗ (ψ ∗ χ));
– SepconMono: for any ϕ1 ϕ2 ψ1 ψ2, if � ϕ1 → ϕ2 and � ψ1 → ψ2, then �

(ϕ1 ∗ ψ1) → (ϕ2 ∗ ψ2);
– AndpIntros: for any ϕ ψ, � ϕ → ψ → (ϕ ∧ ψ);
– AndpElim1: for any ϕ ψ, � (ϕ ∧ ψ) → ϕ;
– AndpElim2: for any ϕ ψ, � (ϕ ∧ ψ) → ψ;
– ModusPones: for any ϕ ψ, if � ϕ → ψ and � ϕ, then � ψ;
– Axiom1: for any ϕ ψ, � ϕ → (ψ → ϕ);
– Axiom2: for any ϕ ψ χ, � (ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ).

LOGIC: A Coq Library for Logics 225

References

1. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19718-5 1

2. Appel, A.W.: Verifiable C, chap. 5–17, 21, 35–39 (2016)
3. Barras, B., et al.: The coq Proof Assistant reference manual. Technical report,

INRIA (1998)
4. Benzmüller, C., Claus, M., Sultana, N.: Systematic verification of the modal logic

cube in Isabelle/Hol. In: Kaliszyk, C., Paskevich, A. (eds.) Proceedings Fourth
Workshop on Proof eXchange for Theorem Proving, PxTP 2015, Berlin, Germany,
2–3 August 2015. EPTCS, vol. 186, pp. 27–41 (2015), https://doi.org/10.4204/
EPTCS.186.5

5. Benzmüller, C., Woltzenlogel Paleo, B.: Interacting with modal logics in the coq
proof assistant. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS,
vol. 9139, pp. 398–411. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20297-6 25

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

7. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-FLOYD: a sep-
aration logic tool to verify correctness of C programs. J. Autom. Reason. 61(1–4),
367–422 (2018). https://doi.org/10.1007/s10817-018-9457-5

8. Cao, Q., Cuellar, S., Appel, A.W.: Bringing order to the separation logic jungle.
In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 190–211. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71237-6 10

9. Chlipala, A.: The bedrock structured programming system: combining generative
metaprogramming and Hoare logic in an extensible program verifier. In: Morrisett,
G., Uustalu, T. (eds.) ACM SIGPLAN International Conference on Functional
Programming, ICFP 2013, Boston, MA, USA - 25–27 September 2013, pp. 391–
402. ACM (2013). https://doi.org/10.1145/2500365.2500592

10. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate Texts
in Mathematics, vol. 291, 2nd edn. Springer, Cham (1994). https://doi.org/10.
1007/978-3-030-73839-6

11. Forster, Y., Kirst, D., Wehr, D.: Completeness theorems for first-order logic anal-
ysed in constructive type theory. J. Log. Comput. 31(1), 112–151 (2021). https://
doi.org/10.1093/logcom/exaa073

12. Forster, Y., Larchey-Wendling, D.: Certified undecidability of intuitionistic linear
logic via binary stack machines and Minsky machines. In: Mahboubi, A., Myreen,
M.O. (eds.) Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, Cascais, Portugal, 14–15 January 2019,
pp. 104–117. ACM (2019). https://doi.org/10.1145/3293880.3294096

13. Henz, M., Hobor, A.: Teaching experience: logic and formal methods with coq.
In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 199–215.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25379-9 16

14. Jensen, J.B.: Techniques for model construction in separation logic. Ph.D. thesis,
IT University of Copenhagen, March 2014. https://public.knef.dk.s3-website-us-
east-1.amazonaws.com/research/sltut.pdf

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.4204/EPTCS.186.5
https://doi.org/10.4204/EPTCS.186.5
https://doi.org/10.1007/978-3-319-20297-6_25
https://doi.org/10.1007/978-3-319-20297-6_25
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/978-3-319-71237-6_10
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1007/978-3-030-73839-6
https://doi.org/10.1007/978-3-030-73839-6
https://doi.org/10.1093/logcom/exaa073
https://doi.org/10.1093/logcom/exaa073
https://doi.org/10.1145/3293880.3294096
https://doi.org/10.1007/978-3-642-25379-9_16
https://public.knef.dk.s3-website-us-east-1.amazonaws.com/research/sltut.pdf
https://public.knef.dk.s3-website-us-east-1.amazonaws.com/research/sltut.pdf

226 Y. Tao and Q. Cao

15. Jung, R., Jourdan, J., Krebbers, R., Dreyer, D.: RustBelt: securing the foundations
of the rust programming language. Proc. ACM Program. Lang. 2(POPL), 66:1–
66:34 (2018). https://doi.org/10.1145/3158154

16. Jung, R., et al.: Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, 15–17 January 2015, pp. 637–650. ACM (2015).
https://doi.org/10.1145/2676726.2676980

17. Krebbers, R., et al.: Mosel: a general, extensible modal framework for interactive
proofs in separation logic. PACMPL. 2(ICFP), 77:1–77:30 (2018). https://doi.org/
10.1145/3236772

18. Mendelson, E.: Introduction to Mathematical Logic, 3rd edn. Chapman and Hall,
London (1987)

19. Paulson, L.C. (ed.): Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0030541

20. Pierce, B.C., et al.: Software foundations. Webpage: https://wwwcis.upenn.edu/
bcpierce/sf/current/index.html (2010)

21. Sieczkowski, F., Bizjak, A., Birkedal, L.: ModuRes: a COQ library for modular
reasoning about concurrent higher-order imperative programming languages. In:
Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 375–390. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22102-1 25

22. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 23

23. Tews, H.: Formalizing cut elimination of coalgebraic logics in COQ. In: Galmiche,
D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS (LNAI), vol. 8123, pp.
257–272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40537-
2 22

https://doi.org/10.1145/3158154
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3236772
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/BFb0030541
https://wwwcis.upenn.edu/bcpierce/sf/current/index.html
https://wwwcis.upenn.edu/bcpierce/sf/current/index.html
https://doi.org/10.1007/978-3-319-22102-1_25
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-642-40537-2_22
https://doi.org/10.1007/978-3-642-40537-2_22

	LOGIC: A Coq Library for Logics
	1 Introduction
	2 Background: Coq Proof Assistant
	3 Overview
	4 Parameterized Definitions and Proofs
	4.1 Connectives and Judgements
	4.2 Proof Rules
	4.3 Semantics and Soundness
	4.4 Completeness

	5 Logic Generator
	5.1 Features of Logic Generator
	5.2 Design of Logic Generator

	6 Related Work
	7 Conclusion
	A Sample Use Cases of Logic Generator
	A.1 Demo1: Intuitionistic Propositional Logic
	A.2 Demo2: A Very Small Logic
	A.3 Demo3: Intuitionistic Propositional Logic
	A.4 Demo4: Separation Logic, Without Separation Conjunction
	A.5 Demo5: Separation Logic, with Separating Conjunction
	A.6 Demo6: Separation Logic, Without Separating Implication
	A.7 Demo7: Separation Logic, Constructed from Model Level
	A.8 Mendelson's Propositional Logic
	A.9 Minimum Separation Logic
	A.10 Demo for Bedrock2's Separation Logic

	References

