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Abstract. We address the problem of influence maximization within
the framework of the linear threshold model, focusing on its compari-
son to the independent cascade model. Previous research has predomi-
nantly concentrated on the independent cascade model, providing var-
ious bounds on the adaptivity gap in influence maximization. For the
case of a (directed) tree (in-arborescence and out-arborescence), [CP19]
and [DPV23] have established constant upper and lower bounds for the
independent cascade model.

However, the adaptivity gap of this problem on the linear thresh-
old model is not so extensively studied as on the independent cascade
model. In this study, we present constant upper bounds for the adap-
tivity gap of the linear threshold model on trees. Our approach builds
upon the original findings within the independent cascade model and

employs a reduction technique to deduce an upper bound of 4e2

e2−1
for the

in-arborescence scenario. For out-arborescence, the equivalence between
the two models reveals that the adaptivity gap under the linear threshold
model falls within the range of [ e

e−1
, 2], as demonstrated in [CP19] under

the independent cascade model.

1 Introduction

The influence maximization problem, initially introduced in [DR01,RD02], is a
well-known problem that lies at the intersection of computer science and eco-
nomics. It focuses on selecting a specific number of agents, referred to as seeds, in
a social network to maximize the number of agents influenced by them. To ana-
lyze this problem mathematically and formally, social networks are represented
as weighted graphs, where vertices correspond to agents and edges represent
their connections, with each edge assigned a weight indicating the strength of
the connection. The independent cascade model [KKT03] and the linear threshold
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model [KKT03] are two prominent diffusion models that have received signifi-
cant attention in previous studies. These models have been applied to various
fields such as viral marketing, meme usage, and rumor control.

More recently, the adaptive influence maximization problem has gained con-
siderable attention. Unlike the original setting where all seeds are selected at
once, the adaptive version allows seeds to be selected based on observations of
the propagation of previously chosen seeds. Of particular interest are two feed-
back models [GK11], namely myopic feedback and full adoption feedback. When
considering myopic feedback, only the status of the seeds’ neighbors can be
observed. Conversely, the full adoption feedback allows the whole propagation
process of previously selected seeds to be considered when selecting the next
seed. While the introduction of adaptive seed selection might enhance the influ-
ence of the seed set, it also presents significant technical challenges. Therefore,
it becomes imperative to evaluate the benefits of adaptivity, which is measured
by the adaptivity gap. The adaptivity gap is informally defined as the supremum
value of the ratio between the optimal influence spread of an adaptive policy
and a non-adaptive one. It provides insights into the performance improvement
achieved by the adaptive strategy and gives us a taste of whether it is worth the
effort to develop the adaptive strategy for the problem.

Regarding the adaptivity gap, a number of previous works have explored
this concept in the context of the independent cascade model [CP19,DPV23,
PC19]. In [CP19], the adaptivity gap for the independent cascade model with
full adoption feedback was studied for certain families of influence graphs. It
was demonstrated that the adaptivity gap lies in the range of [ e

e−1 , 2e
e−1 ] for in-

arborescence, [ e
e−1 , 2] for out-arborescence, and exactly e

e−1 for bipartite graphs.
Another recent work [DPV23] improved upon these results by providing a tighter
upper bound of 2e2

(e2−1) for the adaptivity gap of in-arborescence. Furthermore,
this work established an upper bound of ( 3

√
n + 1) for general graphs, where n

stands for the number of vertices in the graph. For the myopic feedback setting, it
has been proved in [PC19] that the adaptivity gap for the independent cascade
model with myopic feedback is at most 4 and at least e

e−1 . However, despite
the progress made in analyzing the adaptivity gap for the independent cascade
model, to the best of our knowledge, no existing results are available on the
adaptivity gap for the linear threshold model.

1.1 Our Results

In this work, we give an upper bound for the adaptivity gap for in-arborescence
under the linear threshold model as follows.

Theorem 1. The adaptivity gap AGLT for in-arborescence under the linear
threshold model is no more than 4e2

e2−1 .

Also, for out-arborescence, the linear threshold model is equivalent to the
independent cascade model since each vertex has at most in-degree 1. Thus,
the results under the independent cascade model for out-arborescence given by
[CP19] can be also used in the linear threshold model (Table 1).
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Theorem 2. The adaptivity gap AGLT for out-arborescence under the linear
threshold model satisfies that AGLT ∈ [ e

e−1 , 2].

Table 1. The previous results and the results of this paper are summarized in the
table. New results of this paper are in blue.

Diffusion
Model

Feedback
Model

Graph Family Lower Bound of
Adaptivity Gap

Upper Bound of
Adaptivity Gap

Independent
Cascade

Full adoption
feedback

In-arborescence
e

e − 1

2e2

(e2 − 1)

Out-arborescence
e

e − 1
2

Bipartite graphs
e

e − 1

e

e − 1
General graphs ( 3

√
n + 1)

Myopic
feedback

General graphs
e

e − 1
4

Linear
Threshold

Full adoption
feedback

In-arborescence
4e2

e2 − 1

Out-abborescence
e

e − 1
2

1.2 Related Works

The influence maximization problem was initially proposed in [DR01] and
[RD02]. Subsequently, the two most extensively studied diffusion models, namely
the independent cascade model and the linear threshold model, were introduced
in [KKT03], which also demonstrated their submodularity. For any submod-
ular diffusion model, the greedy algorithm is shown to obtain a (1 − 1/e)-
approximation to the optimal influence spread [NWF78,KKT03,KKT05,MR10].
A later work [STY20] shows that the approximation guarantee of the greedy algo-
rithm for the influence maximization problem under the linear threshold model
is asymptotically (1 − 1/e).

The adaptive influence maximization problem is first considered in [GK11].
The results relevant to adaptivity gaps under the independent cascade model
have been discussed before, and we discuss further related work here. Later,
Asadpour and Nazerzadeh studied the adaptivity gap for the problem of maxi-
mizing stochastic monotone submodular functions [AN16].

The adaptivity gap compares the optimal adaptive solution to the optimal
nonadaptive solution. Motivated by that the inapproximability of the influence
maximization problem [KKT03,ST20] and the fact that most influence maxi-
mization algorithms are based on greedy, the concept of greedy adaptivity gap is
introduced in [CPST22], which depicts how much adaptive greedy policy would
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outperform its non-adaptive counterpart. This work also showed that the greedy
adaptivity gap is at least (1− 1/e) for an arbitrary combination of diffusion and
feedback models.

2 Preliminaries

2.1 Linear Threshold Model

In the linear threshold model (LT), we have a weighted directed graph called the
influence graph G = (V = [n], E, {pu,v | (u, v) ∈ E}), satisfying

∑
u pu,v ≤ 1.

Fix a seed set S ⊆ V , the diffusion process in the LT model is defined as
follows. Define the current activated vertex set T , and initialize T = S. Before
the diffusion process starts, every vertex first independently samples a value
ai ∈ [0, 1] uniformly at random. In each iteration, if a non-activated vertex
x satisfies that

∑
u∈T pu,x ≥ ax, it will be activated and let T = T ∪ {x}.

The diffusion process terminates when there is no more activated vertex in an
iteration.

It is mentioned in [KKT03] that the LT model has another equivalent inter-
pretation (Fig. 1). Fix a seed set S ⊆ V .

Fig. 1. The above pictures are an example of weighted directed influence graph and an
instance of its live-edge graph. In the LT model, the right live-edge graph appears for a
probability 0.5 · 0.5 · 0.2 = 0.05. However, in the IC model, the appearing probability is
0.5 · 0.7 · 0.5 · 0.2 · 0.2 = 0.007. Readers can find the differences between the two models
in this example.

Then sample a live-edge graph L = (V,L(E)) of G, which is a random graph
generated from the base graph G as follows. For each vertex i, sample at most
one in-edge, where the edge (u, i) is selected with probability pu,i, and add this
edge (if exists) to L(E). In this case, the diffusion process will activate all the
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vertices that can be reached from S. Given a live-edge graph L, use R(S,L) to
denote all the vertices activated at the end of this process. Given a seed set S,
the expected influence spread of S is defined as σ(S) := EL[|R(S,L)|].

2.2 Independent Cascade Model

The independent cascade model (IC) also involve a weighted directed influence
graph G = (V = [n], E, {pu,v | (u, v) ∈ E}). Before the beginning of the propa-
gation, a live-edge graph L = (V,L(E)) is sampled. The sampling of the live-edge
graph in the IC model is simpler than that of the LT model. Each edge e ∈ E
appears in L(E) independently with probability pe. When an edge is present in
the live-edge graph, we say that it is live. Otherwise, we say that it is blocked.
Denote the set of all possible live-edge graphs by S, and the distribution over L
by P. Given a seed set S ⊆ V , the vertices affected, denoted by Γ(S,L) is exactly
the set of vertices reachable from S in the live-edge graph L. The influence reach
of a certain seed set on a live-edge graph f : {0, 1}V × L → R+ is defined as the
number of affected vertices, i.e., f(S,L) = |Γ(S,L)|. Then we define the influ-
ence spread of a seed set σ(S) to be the expected number of affected vertices at
the end of the diffusion process, i.e., σ(S) = EL∼P [f(S,L)].

2.3 Non-adaptive Influence Maximization

The non-adaptive influence maximization problem is defined as a computational
problem that, given an influence graph G and an integer k ≥ 1, we are asked to
find a vertex set S satisfying that |S| = k and maximizing σ(S). Use OPTN (G, k)
to denote the maximal σ(S) under graph G and parameter k. The subscript
“N” stands for “non-adaptive”, which is in contrast with the “adaptive” model
defined in the next section.

2.4 Adaptive Influence Maximization

Compared with non-adaptive influence maximization problem, the adaptive set-
ting allows to activate the seeds sequentially and adaptively in k iterations. One
can first choose a vertex, activates it, and see how it goes. After observing the
entire diffusion process of the first vertex, we can change their strategy optimally
adaptive to the diffusion process. Similarly, the choices of the following vertices
are based on the previous observation. We consider the full-adoption feedback
model, which means the adaptive policy observes the entire influence spread
from the previous chosen vertices.1

An adaptive policy can be formally defined as follows. Given a live-edge graph
L, the realization φL : V → 2V denotes a function from a vertex to a vertex set.
For a fix vertex v, define φL(v) := R(v, L), i.e., the set of vertices activated by
v under the live-edge graph L. Given a subset S of V satisfying that |S| = k,

1 Another commonly considered model is called the myopic feedback model, where
only one iteration of the spread can be observed.
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define the partial realization ψ : S → 2V restricted to S to be the part of some
realization, which can be used to represent the graph observed by the player
at some point of the adaptive algorithm. For a fixed partial realization, let its
domain (the chosen seed vertices) be dom(ψ) := S, let R(ψ) = ∪v∈Sψ(v), and
let f(ψ) = |R(ψ)|. A partial realization ψ′ is called a sub-realization of another
partial realization ψ if and only if that dom(ψ′) ⊆ dom(ψ) and ψ′(v) = ψ(v) for
any v ∈ dom(ψ′).

2.5 Adaptivity Gap

The adaptivity gap for the LT model is defined as follows

AGLT = sup
G,k

OPTLT
A (G, k)

OPTLT
N (G, k)

,

where OPTLT
A (G, k) is the optimal influence spread with a k-vertex seed set

on graph G in the adaptive setting, and OPTLT
N (G, k) is its counterpart in the

non-adaptive setting.
Similarly for the IC model, the adaptivity gap can be defined as follows

AGIC = sup
G,k

OPTIC
A (G, k)

OPTIC
N (G, k)

.

3 Adaptivity Gap for In-Arborescence

An in-arborescence is a directed graph G = (V,E) that can be constructed by
the following process: fix a rooted tree T = (V,E′), and add edge (u, v) if v is
the parent of u in T . An upper bound for AGIC for in-arborescence is given by
[DPV23]. This bound also plays an essential role in our proof of the constant
upper bound for AGLT for in-arborescence.

We prove the following theorem:

Theorem 3. AGLT ≤ 4e2

e2−1 for in-arborescence.

The key technique is to reduce the influence maximization problem in the
LT model to the influence maximization problem in the IC model.

To find a relation between the LT model and IC model, we construct a new
instance G′ in the IC model, but the graph G′ is the same as G both in structures
and weights of edges. The following lemma is the technical lemma in our proof,
which reveals the relation between the two models (Fig. 2).

Lemma 4. OPTLT
A (G, k) ≤ OPTIC

A (G′, 2k)

Proof. The proof outline is to construct an algorithm for G′ based on the optimal
adaptive algorithm for G. There is an observation that after choosing the same
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Fig. 2. This figure gives an example. In the first round, we choose vertex indexed 4,
and the diffusion process stops at it self. In the second, round we choose vertex 5, while
the process also stops at itself. According to our reduction, we have the probability
p5,3(1/pt3 − 1) = 0.2 to add vertex 3 to our seed set in this case.

first seed vertex both in G and G′, the diffusion process shares the same distri-
bution on the in-arborescence. However, in the following process, the appearing
probability of the edge would increase in the LT model, and we need a larger
seed set in the IC model to compensate for the boosted probability.

To formalize the intuitions above, we design an k-round adaptive algorithm
for G′. Let π be the optimal adaptive algorithm for G, and π′ be the algorithm
constructed for G′. First, we maintain a current partial realization ψ, which is
an empty set at first. In the first round, we simulate the algorithm π in G′ to
get the first seed of π′. In π′, we also add π(ψ) (ψ = ∅ at first) to our seed set,
and add (π(ψ), R(π(ψ))) to ψ. Suppose that the diffusion process of π(ψ) end at
vertex u, we mark the parent of u (if exists) as a critical point. Also, we maintain
a value for each vertex v called remaining potential defined as

ptv :=
∑

u∈Child(v),u is not activated

pu,

where we use Child(v) to denote the set of children of v on the tree.
In the next k − 1 rounds, we first choose x = π(ψ) to be our new seed. How-

ever, the existing probabilities of some edges increased because of the previous
rounds. Suppose the diffusion process of x stops at a vertex u, and let its parent
be v. If v is a critical point, which means the existing probability of edges (u, v)
has already increased, we flip a biased coin which appears heads with probability
pu,v(1/ptv−1). If the coin appears heads, we choose v to be our next seed, remove
v from critical vertex sets, and continue this round. On the contrary, we just go
to the next round. Obviously, this process eventually ends at some vertex y.
Before the end of this round, we update ψ with ψ∪(x, {the paths from x to y)},
and mark y’s parent (if exists) as a new critical point.
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First of all, it’s easy to verify that, the ψ after i rounds shares the same
distribution in the LT model after choosing the first i seeds. Thus, ELT(π) =
EIC(π′). Also, there is an observation that there are at most k vertices marked
as critical points. Thus, we have that

|π′| ≤ k + k = 2k,

and
OPTLT

A (G, k) = ELT(π) = EIC(π′) ≤ OPTIC
A (G′, 2k),

as desired.

Lemma 4 builds a connection between the two models. Further analysis is needed
to give an upper bound of AGLT.

Lemma 5. OPTLT
N (G, k) ≥ OPT IC

N (G′, k)

Proof. This can be proved by an easy reduction. We want to prove that for every
fixed seed set S, it holds that,

EL∼LT(R(L, S)) ≥ EL∼IC(R(L, S)).

First, by the linearity of the expectation, it holds that,

EL∼LT(R(L, S)) =
∑

v∈V

Pr
L∼LT

[v is activated].

Similarly, we have that,

EL∼IC(R(L, S)) =
∑

v∈V

Pr
L∼IC

[v is activated].

Then, we will prove by induction that

Pr
L∼LT

[v is activated] ≥ Pr
L∼IC

[v is activated]

with a decreasing order of v’s depth.
For a vertex v with the largest depth, if it is in the seed set, it holds that

Pr
L∼LT

[v is activated] = Pr
L∼IC

[v is activated] = 1.

Otherwise, it holds that

Pr
L∼LT

[v is activated] = Pr
L∼IC

[v is activated] = 0.
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For a vertex w of another depth, assume that every child of w satisfies the
induction hypothesis. We have that,

Pr
L∼LT

[w is activated] =
∑

u∈Child(v)

pu,w Pr
L∼LT

[u is activated]

≥
∑

u∈Child(v)

pu,w Pr
L∼IC

[u is activated]

Union bound≥ 1 −
∏

u∈Child(v)

(1 − pu,w Pr
L∼IC

[u is activated])

= Pr
L∼IC

[w is activated] ,

as desired.

The last step is to bound OPTIC
A (G′, 2k) by OPTIC

A (G′, k). This comes from the
following submodularity lemma:

Lemma 6 (Adaptive Submodularity for the IC model, [GK11]).
Let G be an arbitrary influence graph. For any partial realizations ψ, ψ′ of G

such that ψ ⊆ ψ′, and any node u /∈ R(ψ′), we have that Δ(u | ψ′) ≤ Δ(u | ψ),
where Δ(u | ψ) represents the expected increasing influence to choose u under ψ.

This lemma gives a good property of the IC model, leading to the following
submodularity lemma of the optimal adaptive algorithm:

Lemma 7. OPT IC
A (G′, 2k) ≤ 2OPT IC

A (G′, k)

Proof. First, we divide the optimal adaptive algorithms π′ for G′ with a fixed
seed set size 2k. We want to argue that the expected influence of each part is
less than OPTIC

A (G′, k).
For the first part, it is an adaptive algorithm with seed set size equaling k.

Thus, the total influence should be not more than OPTIC
A (G′, k).

After the selection of the first k seeds, there exists a non-empty partial real-
ization ψ. We want to prove that if we select k more seeds, the expected extra
influence is no more than OPTIC

A (G′, k). This is a natural corollary of adaptive
submodularity.

Thus, we have OPTIC
A (G′, 2k) ≤ 2OPTIC

A (G′, k) as desired.

Lemma 8 ([DPV23]). AGIC ≤ 2e2

e2−1 .

This bound is given by [DPV23]. And can be used to give a bound of AGLT:
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Proof (Proof of Theorem 1) Putting together Lemma 4, 5, 7, 8, we have

AGLT = sup
G,k

OPTLT
A (G, k)

OPTLT
N (G, k)

≤ sup
G,k

OPTLT
A (G, k)

OPTIC
N (G′, k)

≤ sup
G,k

OPTIC
A (G′, 2k)

OPTIC
N (G′, k)

≤ sup
G,k

2OPTIC
A (G′, k)

OPTIC
N (G′, k)

≤ 2AGIC

≤ 4e2

e2 − 1
,

as desired.

4 Discussions and Open Questions

In [CP19] and [DPV23], they also give some constant upper bounds under the
IC model for some other graphs such as one-directional bipartite graphs. Also,
[DPV23] gives an upper bound for general graphs though it is not a constant
bound. We have the following conjecture.

Conjecture 1 The adaptivity gap for general graphs under the LT model has a
constant upper bound.

However, adaptivity algorithms gain more profits in the LT model than the
IC model. Thus, we also have the following conjecture.

Conjecture 2 The adaptivity gap for general graphs under the IC model has a
constant upper bound.

Also, we have a conjecture about the relation between the two models on
the general graphs, and we believe that our approach can help to build a similar
argument on general graphs.

Conjecture 3 There is a Lemma 4 like argument holds for general graphs.

Thus, as a corollary of the above conjecture, we are able to claim that the
adaptivity gap on LT model is linearly upper bounded by the adaptivity gap on
IC model.
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