
Springer Nature 2021 LATEX template

Verifying Programs with Logic and Extended

Proof Rules: Deep Embedding v.s. Shallow

Embedding

Zhongye Wang1*, Qinxiang Cao1 and Yichen Tao1

1Shanghai Jiao Tong University, Shanghai, China.

*Corresponding author(s). E-mail(s):
wangzhongye1110@sjtu.edu.cn;

Contributing authors: caoqinxiang@gmail.com;
taoyc0904@sjtu.edu.cn;

Abstract

Many foundational program verification tools have been developed
to build machine-checked program correctness proofs, a majority of
which are based on Hoare logic. Their program logics, their asser-
tion languages, and their underlying programming languages can be
formalized by either a shallow embedding or a deep embedding.
Tools like Iris and early versions of Verified Software Toolchain
(VST) choose different shallow embeddings to formalize their pro-
gram logics. But the pros and cons of these different embeddings
were not yet well studied. Therefore, we want to study the impact
of the program logic’s embedding on logic’s proof rules in this paper.
This paper considers a set of useful extended proof rules, and four
different logic embeddings: one deep embedding and three common
shallow embeddings. We prove the validity of these extended rules
under these embeddings and discuss their main challenges. Further-
more, we propose a method to lift existing shallowly embedded log-
ics to deeply embedded ones to greatly simplify proofs of extended
rules in specific proof systems. We evaluate our results on two
existing verification tools. We lift the originally shallowly embedded
VST to our deeply embedded VST to support extended rules, and
we implement Iris-CF and deeply embedded Iris-Imp based on the
Iris framework to evaluate our theory in real verification projects.

1

ar
X

iv
:2

31
0.

17
61

6v
1

 [
cs

.P
L

]
 2

6
O

ct
 2

02
3

Springer Nature 2021 LATEX template

2 Deep Embedding v.s Shallow Embedding

Keywords: Hoare logic, program verification, deep embedding, shallow
embedding, machine-checked proofs, separation logic

Statements and Declarations

Funding

This research is sponsored by National Natural Science Foundation of China
(NSFC) Grant No. 61902240.

Competing interests

• The authors have no relevant financial or non-financial interests other
than those declared in the Funding section.

• The authors have no competing interests to declare that are relevant to
the content of this article.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 3

1 Introduction

Computer scientists have gained great success in developing foundationally
sound program verification systems in the past decade. The word founda-
tionally means: not only are programs’ correctness properties verified, but
the correctness proofs and the depended proof rules are also verified and
machine-checked in a proof assistant like Coq [1] or Isabelle [2, 3]. Founda-
tional verification tools like Verified Software Toolchain (VST) [4, 5], Iris [6],
CSimpl [7], CakeML [8] etc. enable their users to verify programs written in
real programming languages like C, Rust and OCaml using Hoare-style logic.

Extended Proof Rules.

Theoretically, a Hoare logic with compositional rules, the consequence rule,
and proof rules for singleton commands (like assignments) is powerful enough
to prove all valid judgement [9]. These rules are often referred to as primary
rules. Figure 1.A shows a sound and complete logic for a toy language with
only skip command, assignment, sequential composition, and if-statement.

A. Primary Rules.

hoare-skip

⊢ {P}skip{P}
hoare-assign

⊢ {P [x 7→ e]}x = e{P}
hoare-seq

⊢ {P}c1{R} ⊢ {R}c2{Q}
⊢ {P}c1 ;; c2{Q}

hoare-if
⊢ {P ∧ [[e]] = true}c1{Q}
⊢ {P ∧ [[e]] = false}c2{Q}

⊢ {P}if e then c1 else c2{Q}

hoare-conseq

P ⊢ P ′ ⊢ {P ′}c{Q′} Q′ ⊢ Q

⊢ {P}c{Q}

B. Extended Rules.

seq-assoc

⊢ {P}(c1 ;; c2) ;; c3{Q}
⊢ {P}c1 ;; (c2 ;; c3){Q}

if-seq

⊢ {P}if e then c1 ;; c3 else c2 ;; c3{Q}
⊢ {P}(if e then c1 else c2) ;; c3{Q}

C. Derived Rules.
hoare-conseq-pre

P ⊢ P ′ ⊢ {P ′}c{Q}
⊢ {P}c{Q}

Fig. 1 A example Hoare logic for a toy language: primary rules and extended rules

But in practice [5], a verification tool can be much easier to use if more rules
are added to aid our proofs. Figure 1.B shows two extended proof rules for the
toy language. seq-assoc changes the associativity of sequential composition
and allows provers to verify a program both from the beginning to the end in
the forward style and from the end to the beginning in the backward style;
if-seq distributes the command c3 after an if-block to two branches inside it,

Springer Nature 2021 LATEX template

4 Deep Embedding v.s Shallow Embedding

and in this way, instead of finding an intermediate assertion that merges post-
conditions of two branches c1 and c2, provers can directly verify c1 ; ; c3 and
c2 ;; c3, with no obligation to find a common post-condition for two branches.
In this paper, we also incorporate control flow reasoning in program logics,
which allows realistic program verification and this induces more extended
rules with increased complexity, which are also covered in this paper.

We make a distinction between extended rules and derived rules. Derived
rules are directly derived from primary rules with mostly trivial proofs, and
these proofs are the same across different embedding of a logic with same
primary rules. Figure 1.C shows an example of derived proof rules. hoare-
conseq-pre is easily derivable from hoare-conseq and it allows weakening
the precondition but keep the postcondition untouched. This paper focuses on
extended rules, whose proofs are usually non-trivial and differs across different
embeddings. Both derived rules and extended rules are useful in practice and
we admit both as necessary components of a verification tool.

Extended Rules & Hoare Logic Embeddings.

To utilize these extended rules in program verifications, developers should first
prove them in their logics. However, these extended rules may not be easily
provable in every foundational verification tool, e.g., shallowly embedded VST
does not provide seq-inv (in figure 3) due to its tremendous proof burden
while we can develop a simple formal proof of it in our deeply embedded VST.
This is because different verification tools may choose various ways, i.e., various
embeddings, to formalize their program languages and program logics to obtain
unique features. For example, a deeply embedded program logic defines the
logic by inductive proof trees, while a shallowly embedded one directly defines
Hoare triple’s validity using a program’s semantics.

Due to differences in embedding methods, not all these extended rules
are valid under each embedding, and challenges we might encounter in their
proofs also vary from embedding to embedding. Therefore, in this paper, we
(1) present four mainstream Hoare logic embeddings1 based on our
survey of Hoare-logic-based program verification projects including VST, Iris,
FCSL, etc., (2) identify a set of extended proof rules that can benefit
verification automation; and (3) formally verify these extended proof
rules under these different embeddings.

Another Contribution: A Lifting Approach.

We summarize main challenges in proofs of these extended rules and find that
most proofs of extended proof rules in shallowly embedded program logics
is more complicated than those in the deeply embedded one. It would take
tremendous proof effort to equip verification tools using shallow embeddings
with these extended proof rules. Another contribution of our paper is to
present a much easier way to extended shallowly embedded program

1One deep embedding, and three shallow embedding respectively based on big-step semantics,
weakest precondition, and continuation.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 5

logic with extended proof rules: we can first lift the shallowly embedded
logic into a deeply embedded one with acceptable proof effort and then use
simpler proofs of extended rules under the deep embedding.

We may not be the first one to discover and utilize such approach, but
to our knowledge, it has never been formally presented in literatures and we
believe it can help optimize existing foundational verification tools. To evaluate
the lifting approach, we apply it to two existing verification projects.

▷ We lift the shallowly embedded VST [4], a verification framework for C
programs, to the deeply embedded VST, which supports most extended
rules and is the basis of the VST currently in the industrial use [4].

▷ We also instantiate it on the Iris [6] framework. We first extend the shal-
lowly embedded Iris framework to support control flow reasoning in our
Iris-CF. Then we encode a deeply embedded logic, Iris-Imp, above it using
the lifting approach.

Our survey and formalization techniques can benefit future verification
tools in following ways. Firstly, our surveys and proofs indicate the level of
support for extended proof rules under differently embedded program logics.
Knowing which extended proof rules a verification tool supports, verification
tool users may decide in advance which tool best matches their proof goals. And
by understanding advantages and limitations of different embedding methods,
verification tool developers can design proof systems satisfying the growing
industrial demands. Secondly, our lifting approach can help existing verifica-
tion tools to improve their framework by implementing extended rules with
alleviated proof burden, as we demonstrate in our VST and Iris-Imp projects.

Paper Structure.

Firstly, in section 2, we fix primitives of the programming language and pri-
mary proof rules of the program logic that this paper focuses on. Based on
this logic, we present three categories of extended proof rules and explain how
they benefit verification tools.

We then clarify the concept of deep/shallow embeddings for programming
languages, assertion languages, and program logics, along with the settings
of this paper in section 3, since they will affect the correctness of extended
proof rules. In section 4, we formally define a deep embedding and three shal-
low embeddings of the Hoare logic supporting control flow reasoning. We also
briefly review existing Hoare-logic based verification frameworks using these
embeddings.

Then, in section 5, we present formal proofs of these extended rules under
each embedding method and discuss their main challenges. In section 6, we
present our approach to lift a shallowly embedded program logic into a deeply
embedded one to avoid otherwise challenging proofs of extended rules. This
approach relies on careful choices of primary rules, which is explained in
section 7.

Springer Nature 2021 LATEX template

6 Deep Embedding v.s Shallow Embedding

After that, we discuss various extensions to the Hoare logic and its
embedding in section 8. They include separation logic, procedure calls, total
correctness, non-determinism, and impredicative assertions.

In section 9, we apply our lifting method to shallowly embedded VST
to obtain our deeply embedded VST. We then present Iris-CF, a shallowly
embedded program logic which extends Iris to support control flow reasoning,
and we lift Iris-CF into a deeply embedded logic, Iris-Imp, and equip it with
extended rules for the demonstration of our lifting method.

Lastly, we discuss related works of program logic embeddings in section 10
and conclude the paper in section 11.

We formalize all results of this paper in Coq in a repository[10]. It con-
tains formalizations and proofs of extended rules under three different shallow
embeddings, the deeply embedded VST, and our Iris-CF and Iris-Imp.

2 Program Logic & Extended Rules

A verification tool always comes with some very basic primary rules, like
compositional rules, the consequence rule, and singleton command rules. How-
ever, we could further enrich its capability by adding extended proof rules,
some of which will be of great assistance to users for proof simplification and
automation.

In this section, we first present in section 2.1 a toy language and a set
of primary rules for the program logic that we will use for demonstration
throughout this paper. Then based on this program logic, we introduce in
the remainder of this section three categories of useful extended proof rules:
transformation rules (section 2.2), structural rules (section 2.3), and inversion
rules (section 2.4). We demonstrate some representative rules in each category
(figure 3) and show their potential usages.

2.1 The Toy Language and the Program Logic

The While-CF language (While-language with control f low commands)
in figure 2 includes the assignment statement, x = e, which assigns the value
of e to variable x, and empty command skip which does nothing. It includes
three basic structural commands: c1 ; ; c2 executes c1 and c2 in sequence;
if e then c1 else c2 is the regular if-statement; for(;; c2) c1 is the for-loop in
C language style, where c1 is the loop body and c2 is the increment step after
the execution of each loop iteration.2 It has break command and continue

command to manipulate control flows in a loop.
Figure 2 shows some terms of the assertion language. It includes basic

first-order logic terms and terms to support express evaluation and variable
assignment. The term [[e]] denotes the value of e evaluated on given state σ,
i.e., eval(e, σ), and [[e]] = v means expression e evaluates to value v. P [x 7→ e]

2Although the language is named While-CF, we use the for-loop instead of the while-loop
because the for-loop will yield more interesting extended proof rules, and it is also the choice of
the VST. It is also non-trivial because a continue command in the for-loop body c1 does not skip
the increment step c2, which cannot be encoded by a while-loop.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 7

While-CF Language
x, y ∈ program-variable a, b ∈ logic-variable

v ∈ value e ∈ expression σ ∈ state
c ∈ command := skip | x = e | c1 ;; c2 | if e then c1 else c2

| for(;; c2) c1 | break | continue

Assertion Language

P,Q,R ∈ assertion := ⊤ | ⊥ | ¬P | P ∧Q | P ∨Q | P → Q
| ∀a.P | ∃b.P | [[e]] = v | P [x 7→ e] | · · ·

Primary Proof Rules
hoare-skip
⊢ {P}skip{P, [⊥,⊥]}

hoare-break
⊢ {P}break {⊥, [P,⊥]}

hoare-continue
⊢ {P}continue{⊥, [⊥, P]}

hoare-seq

⊢ {P}c1{Q′, [R⃗]}
⊢ {Q′}c2{Q, [R⃗]}

⊢ {P}c1 ;; c2{Q, [R⃗]}

hoare-loop
⊢ {P}c1{I, [Q, I]}
⊢ {I}c2{P, [Q,⊥]}

⊢ {P}for(;; c2) c1{Q, [⊥,⊥]}

hoare-if
⊢ {P ∧ [[e]] = true}c1{Q, [R⃗]}
⊢ {P ∧ [[e]] = false}c2{Q, [R⃗]}

⊢ {P}if e then c1 else c2{Q, [R⃗]}

hoare-assign
⊢ {P [x 7→ e]}x = e{P, [⊥,⊥]}

hoare-consequence

⊢ {P ′}c{Q′, [R′
brk, R

′
con]}

P ⊢ P ′ Q′ ⊢ Q R′
brk ⊢ Rbrk R′

con ⊢ Rcon

⊢ {P}c{Q, [Rbrk, Rcon]}
Fig. 2 The While-CF Programming Language and Primary Proof Rules

denotes the assertion after substitution of all occurrences of x by the value of
e evaluated on the current state.

Primary proof rules are listed in figure 2. Intuitively and informally, ⊢
{P}c{Q, [Rbrk, Rcon]}3 means that: starting from any program state satisfying
pre-condition P ,
safety: the execution of the command c never cause an error,
correctness: and if the execution of c terminates and its termination is caused

by break or continue, the post-state will satisfy corresponding control
flow post-condition Rbrk and Rcon. Otherwise, if the program terminates
naturally, the post-state will satisfy normal post-condition Q.

The hoare-skip, hoare-break rule, and hoare-continue are rules
for singleton control flow commands that introduces the pre-condition into
corresponding control flow post-conditions. The singleton command rule

3We use [R⃗] as a syntax sugar for [Rbrk, Rcon].

Springer Nature 2021 LATEX template

8 Deep Embedding v.s Shallow Embedding

hoare-assign4 asserts that the value of variable x used in the pre-condition
will be changed in the post-condition. The hoare-seq rule splits the proof of
two sequentially composed commands. The hoare-loop rule uses two triples
of the loop body and the increment step to build a specification for the for-loop
statement. The hoare-if rule splits the proof of if-statement into two branches
to prove them separately. The hoare-consequence rule allows provers to
strengthen the pre-condition and weaken the post-condition.

Although this programming language is a simple toy example, we may
extend it with heap manipulation commands and function invocations as the
paper will discuss in section 8. Other primary rules related to separation logic
and function invocation can also be included. But to demonstrate our results
about extended rules in section 2 and section 5, the language and proof rules
in figure 2 are sufficient. These primary rules are expressive enough to reason
about loop control flows and also present in real verification tools like VST[4].

In figure 2, the assertion language and the program logic are presented in
a deep embedding style using the syntax of assertions and derivation rules,
but it is only for the purpose of demonstration. However, both of them can
also be defined using shallow embeddings directly using their interpretation
and semantics. We will soon investigate into different embeddings of them in
section 3.

There are lots of useful extended rules that can be implemented above
the program logic in figure 2, and we organize them into three categories and
present some representatives of them in figure 3. We explain in detail the usage
of these extended rules in the following sections.

2.2 Transformation Rules

It is often the case that we know two different programs are semanti-
cally equivalent and we should be able to substitute one of them for the
other in a Hoare triple while preserving the triple’s validity. Rules like if-
seq, loop-nocontinue, and loop-unroll15 allow such semantic preserving
transformations, and provers can transform the program into the one that is
easier to verify and sometimes automate its proof. We classify these extended
rules that transforms the command in a Hoare triple as transformation rules.

The proof rule if-seq. The program (if e then c1 else c2) ; ; c3 and
if e then c1 ; ; c3 else c2 ; ; c3 behaves similarly and we can use if-seq to
transform the former into the latter.

Example 1 For a concise demonstration, we first start with a toy example (for which
exists another work-around instead of using if-seq and we will discuss it soon), where

4Here we use the backward version of hoare-assign. There is another forward version of hoare-
assign, ⊢ {P}x = e{∃v. P [x 7→ v] ∧ [[x]] = [[e[x 7→ v]]]}, which can be derived from the former one
and is often used in forward symbolic execution. We use both versions in this paper without notice.

5As far as we know, Andrew W. Appel and the development team of VST has integrated these
transformation rules into VST for improving proof automation since 2017.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 9

Extended Rules — Transformation Rules

if-seq
⊢ {P}if e then c1 ;; c3 else c2 ;; c3{Q, [R⃗]}
⊢ {P}(if e then c1 else c2) ;; c3{Q, [R⃗]}

loop-nocontinue

c1, c2 contain no continue ⊢ {P}for(;; skip) c1 ;; c2{Q, [R⃗]}
⊢ {P}for(;; c2) c1{Q, [R⃗]}

loop-unroll1

⊢ {P}c1{P1, [Rbrk, P1]}
⊢ {P1}c2{P2, [Rbrk, P2]} ⊢ {P2}for(;; c2) c1{Q, [R⃗]}

⊢ {P}for(;; c2) c1{Q, [R⃗]}

Extended Rules — Structural Rules

hoare-ex

forall x. ⊢ {P (x)}c{Q, [R⃗]}
⊢ {∃x. P (x)}c{Q, [R⃗]} nocontinue

c contains no continue

⊢ {P}c{Q, [Rbrk, Rcon]}
⊢ {P}c{Q, [Rbrk, R

′
con]}

Extended Rules — Inversion Rules
seq-inv

⊢ {P}c1 ;; c2{Q, [R⃗]}
exists Q′. ⊢ {P}c1{Q′, [R⃗]}

and ⊢ {Q′}c2{Q, [R⃗]}

loop-inv
⊢ {P}for(;; c2) c1{Q, [⊥,⊥]}

exists I1, I2. ⊢ {I1}c1{I2, [Q, I2]}
and ⊢ {I2}c2{I1, [Q,⊥]} and P ⊢ I1

if-inv
⊢ {P}if e then c1 else c2{Q, [R⃗]}

⊢ {P ∧ [[e]] = true}c1{Q, [R⃗]} and ⊢ {P ∧ [[e]] = false}c2{Q, [R⃗]}
Fig. 3 Three Categories of Extended Rules and Their Representatives

we want to prove the following for some given m, e, c2, Q, R⃗,

⊢ {∃n.[[x]] = n×m ∧ [[y]] = m︸ ︷︷ ︸
P

}(if e then break else z = x/y︸ ︷︷ ︸
c1

) ;; c2{Q, [R⃗]}

Regularly, we need to explicitly provide an intermediate assertion Q′ and show6

· · ·
P ∧ [[e]] ⊢ Rbrk

⊢ {P ∧ [[e]]}break{Q′, [R⃗]}
· · ·

⊢ {P ∧ ¬[[e]]}c1{Q′, [R⃗]}
⊢ {P}(if e then break else c1){Q′, [R⃗]}

· · ·
⊢ {Q′}c2{Q, [R⃗]}

⊢ {P}(if e then break else c1) ;; c2{Q, [R⃗]} (1)

6We abbreviate assertions [[e]] = true as [[e]] and [[e]] = false as ¬[[e]] for the sake of space.

Springer Nature 2021 LATEX template

10 Deep Embedding v.s Shallow Embedding

But when we move c2 inside the if-statement by if-seq, we only need to prove

· · ·
P ∧ [[e]] ⊢ Rbrk

⊢ {P ∧ [[e]]}break ;; c2{Q′, [R⃗]}
· · ·

⊢ {P ∧ ¬[[e]]}c1 ;; c2{Q, [R⃗]}
⊢ {P}if e then break ;; c2 else c1 ;; c2{Q, [R⃗]}
⊢ {P}(if e then break else c1) ;; c2{Q, [R⃗]} (2)

As the reader may wonder, to prove the sequential composition c1 ; ; c2 in (2), we
still need to prove the last two goals for c1 and c2 in (1). The difference here is that
when verifying (2), we can symbolically execute c1 along with c2 from the beginning
to the end. But in (1), we need to symbolically execute two branches to a unifying
post-condition Q′ before executing c2, while symbolic executions of two branches
might produce different free variables in their postconditions and it brings troubles.
We explain this difficulty in detail in following paragraphs.

Symbolic execution in theorem provers is a technique for proof automation.
It simulates the execution of the program and apply the execution’s effect to the
pre-condition according to proof rules. Both VST and Iris uses such technique to
automate their proofs. For example, symbolic execution can automatically transform
the proof goal of the false branch (sequentially composed with a skip command for
demonstration) in (1) as (3) shows (arrows represent symbolic execution steps by
labelled proof rules).

{∃n. [[x]] = n×m ∧ [[y]] = m ∧ · · ·}z = x/y ;; skip{Q′, [R⃗]}
hoare-ex−−−−−−→ {[[x]] = n×m ∧ [[y]] = m ∧ · · ·}z = x/y ;; skip{Q′, [R⃗]}

hoare-assign−−−−−−−−−→
hoare-seq

{[[z]] = n ∧ [[x]] = n×m ∧ [[y]] = m ∧ · · ·}skip{Q′, [R⃗]}
hoare-assign−−−−−−−−−→
hoare-skip

([[z]] = n ∧ [[x]] = n×m ∧ [[y]] = m ∧ · · ·) ⊢ Q′

(3)

During the symbolic execution, it will apply hoare-ex (demonstrated in section 2.3)
to eliminate quantifiers in the pre-condition and introduce the bounded variable as
a free one into the context to reason about it. On the contrary, symbolic execution
cannot automatically determine which free variables should be reverted back into
the assertion as bounded ones in which order so that the following execution steps
can proceed.

Back to the example, symbolic execution of c1 in (3) will introduce n into the
context, which is necessary for forwarding z = x/y. To achieve a unifying Q′ in (1),
we need to revert n back into Q′ in the symbolic execution of c1, since the other
branch does not introduce n and it remains bounded. In other words, the Q′ in (3)
should become ∃n. [[z]] = n∧ [[x]] = n×m∧ [[y]] = m∧· · · , instead of the final assertion
in (3). However, in (2), after we introduce n in the execution of c1, we do not need
to revert it back and when c2 access z and n during its execution, we do not need to
introduce n again. if-seq reduces the complexity of symbolic execution in this case.

Remark.

As we have mentioned, the toy example can be resolved without applying if-
seq. As the proof scheme in (4) indicates, we can extract n in P before we
start the proof of the sequential composition and in this way, there is no need

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 11

to revert n back again when finding the post-conditions of if-branches.

· · ·
⊢ {· · ·}if e then break else c1{· · ·}

· · ·
⊢ {· · ·}c2{· · ·}

⊢ {[[x]] = n×m ∧ [[y]] = m}(if e then break else c1) ;; c2{Q, [R⃗]}
⊢ {∃n.[[x]] = n×m ∧ [[y]] = m}(if e then break else c1) ;; c2{Q, [R⃗]} (4)

However, this does not mean the example is meaningless, because in many
cases, the existential quantifier in the precondition cannot and should not be
eliminated in advance. For example, the precondition below is an assertion to
state the storage of a linked list in the heap. To prove the Hoare triple below
for some x, l, e, c′1, c2, Q, R⃗, we are unable to eliminate all quantifiers in listrep
by hoare-ex without a fixed length of list l. In practice, we should be able
to prove it without such knowledge and keep the listrep predicate folded until
reaching a test-empty operation to the linked list, and then should we unfold
the predicate once and extract quantifiers. if-seq is the only option in these
cases.

⊢ {listrep(x, l)}(if e then break else c′1) ;; c2{Q, [R⃗]}
where listrep(x, l) ≜ (l = nil ∗ emp)

∨ (∃y, v, l′. l = v :: l′ ∗ x 7→ (v, y) ∗ listrep(y, l′))

The proof rule loop-nocontinue. Another exemplary transformation rule
in figure 3 is loop-nocontinue, which allows merging loop body and incre-
mental step into one command when neither of them contains continue. In
this way, users only need to find one loop invariant for the loop body instead
of two (one before the loop body and one before the increment step) when
reasoning about a loop with no continue.

Example 2 This example combines loop-nocontinue and if-seq. The program
divides x by y twice but separate two divisions in the incremental step and the loop
body.

⊢

{
∃n. [[x]] = m2n

∧[[y]] = m︸ ︷︷ ︸
P

}
for(;; x = z/y︸ ︷︷ ︸

c2

) if x > 1︸ ︷︷ ︸
e

then break

else z = x/y︸ ︷︷ ︸
c1

{
[[x]] = 1︸ ︷︷ ︸

Q

, [⊥]

}

The precondition P can serve as a loop invariant, but regularly, we still need to find
another loop invariant after the loop body but before the incremental step. However,
by the symbolic execution (5), it first removes the incremental step and with skip

as the incremental step, it is obvious that another loop invariant is the same as P .
Then it can open the loop and prove that the loop body obeys the invariant. With
the help of if-seq, it can automatically reach two easily provable proof goals without

Springer Nature 2021 LATEX template

12 Deep Embedding v.s Shallow Embedding

manual assistance.
⊢ {P}for(;; c2) if e then break else c1{Q, [⊥]}

loop-−−−−−−−−→
nocontinue

⊢ {P}for(;; skip) (if e then break else c1) ;; c2{Q, [⊥]}
hoare-loop−−−−−−−−→

if-seq
⊢ {P}if e then break ;; c2 else (c1 ;; c2){P, [P,Q]}

hoare-if−−−−−−−−−→
hoare-break

P ∧ ¬[[e]] ⊢ Q and ⊢ {P}c1 ;; c2{P, [P,Q]}

(5)

The proof rule loop-unroll1. One more transformation rule we want to
mention here is the loop-unroll1 rule. It allows peeling the first iteration
of a for-loop and prove it as a separate triples. This is especially useful in
two cases: when the first iteration of a loop does something different from the
remaining iterations, e.g., initialization of some data, and the loop invariant for
the remaining iterations can be greatly simplified without the first iteration;
and when the loop only runs constant number of iterations, it is easier to
simply unfold it into a sequence of loop bodies and use symbolic execution to
prove them automatically.

Although the loop-unroll1 rule in figure 3 does not perfectly match
our criterion for transformation rules, their essence are the same. The loop-
unroll1 rule has its counterpart, the following while-unroll1 for the while
command, in the While language without control flow statements. It unrolls
the first iteration of the while-loop into an if-statement.

while-unroll1
⊢ {P}if b then c ;; while(b) c else skip{Q}

⊢ {P}while(b) c{Q}

If there are control flow commands like break or continue, we cannot simply
transform the for-loop into an if-statement because these commands will jump
out of the scope of the original loop and interfere executions outside the loop.
As a result, we need to split the if-statement in while-unroll1 into several
Hoare triples in loop-unroll1 and specify control flow post-conditions for
the loop body and the increment command.

2.3 Structural Rules

We classify extended rules that transforms pre-/post-conditions in proof goals
as structural rules. These rules allow provers to adjust pre-/post-conditions
into forms that permit more organized proofs.

A typical case is the use of the primary rule hoare-consequence7. For
example, in the last step of symbolic execution (5) from the last section, we
need to prove the following assumption for the then-branch in order to apply
hoare-if to verify the if-statement, where direct application of hoare-break
does not work since the pre-condition does not match the break post-condition

7However, we do not formalize hoare-consequence rule as an extended rule but as a primary
rule due to historical reasons. It is part of the primary rules in Cook’s soundness and completeness
proof of the Hoare logic [9] and is admitted as a primary rule of any Hoare logic ever since.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 13

P and other two post-conditions are not ⊥. We will use hoare-consequence
to weaken the pre-condition into Q and strengthen the post-condition P into
⊥ to match the form of hoare-break. In this way, we can directly apply
hoare-break to the prove the new triple.

P ∧ ¬[[e]] ⊢ Q ⊥ ⊢ P ⊢ {Q}break{⊥, [⊥, Q]}
⊢ {(∃n.[[x]] = m2n ∧ [[y]] = m︸ ︷︷ ︸

P

) ∧ [[x]] ≤ 1}break{P, [P, [[x]] = 1︸ ︷︷ ︸
Q

]}

In this section, we mainly discuss two structural rules in figure 3, hoare-ex
and nocontinue, which we consider as extensions of hoare-consequence.
When separation logic is taken into consideration in section 8.1.1, we will
encounter two more structural rules, frame and hypo-frame, and we
postpone their discussions until then.

The proof rule hoare-ex. As we have already seen in section 2.2, it is a
common situation that we need to prove a Hoare triple whose the precondi-
tion is existentially quantified, e.g., loop invariants are usually existentially
quantified8. If provers can eliminate those existential quantifiers and extract
bounded variables and related pure facts in preconditions into the meta-logic
context, they can then apply domain-specific theories to those extracted vari-
ables — they are not buried in assertions any longer. hoare-ex enable us to
perform such extraction.

Example 3 In the symbolic execution example (3) in section 2.2 (rephrased below),
the first step is applying hoare-ex to remove the existential quantifier. To verify the
assignment z = x/y, we know the result of z will be n and it must be a free variable
so that we can perform substitution of z by n according to hoare-assign.

{∃n. [[x]] = n×m ∧ [[y]] = m ∧ · · ·}z = x/y ;; skip{Q′, [R⃗]}
hoare-ex−−−−−−→ {[[x]] = n×m ∧ [[y]] = m ∧ · · ·}z = x/y ;; skip{Q′, [R⃗]}

· · ·

hoare-ex is different from and sometimes cannot be derived directly from hoare-
consequence. hoare-consequence changes pre-/post-conditions by entailments of
the assertion logic, while hoare-ex is a direct entailment between two Hoare triples
in the meta-logic.

The proof rule nocontinue. This rule allows us to modify the continue
assertion arbitrarily since the program will never exit by continue. We can use
it as an enhancement to the consequence rule when we need to change the

8This is often necessary because logical variables utilized in the proof of the loop body usually
are not exposed to the proof outside the loop. These variables should not be introduced before
the proof of loop body and we need existential quantifiers to introduce this variables in the loop
invariant.

Springer Nature 2021 LATEX template

14 Deep Embedding v.s Shallow Embedding

continue assertion. We can use this proof rule to support derivations of loop-
related extended rules. For example, as we will see later in figure 4, we can
prove loop-nocontinue using the nocontinue and inversion rules, which
is the proof taken by VST.

2.4 Inversion Rules

Compositional rules allow us to combine proofs for separate modules into one
proof for a larger program specification. But in some cases, we would like to
extract information for these modules from the complete specification for other
purposes. We classify extended rules that extract premises of a primary rule
from its goal as inversion rules.

Figure 3 shows two example inversion rules, the seq-inv and loop-inv.
seq-inv is the reversed sequencing rule, where the triple about c1 ;; c2 gives
us the triples of c1 and c2. loop-inv is the reversed loop rule, which gives
us the intermediate loop invariant. They are typical rules that reproduce the
premises in compositional rules from the original conclusion. In the following
sections, we discuss only the seq-inv rule because it is the most representative
inversion rule and other ones have similar conclusions.

Example 4 With inversion rules, we can more easily destruct and reorganize proof
trees in deeply embedded logic, and in our deeply embedded VST, they have been
used extensively in proving other extended rules like transformation rules and struc-
tural rules. For example, in figure 4, the transformation rule loop-nocontinue can
be proven given seq-inv and loop-inv. We first extract information from the original

c1, c2 has no continue

⊢ {P}for(;; skip) c1 ;; c2{Q, [R⃗]}
⊢ {I1}skip{P, [Q,⊥]} ⊢ {P}c1 ;; c2{I1, [Q,P]} loop-inv

⊢ {P}c1 ;; c2{P, [Q,P]} skip-inv & conseq

⊢ {P}c1{I2, [Q,P]} ⊢ {I2}c2{I1, [Q,P]} seq-inv

⊢ {P}c1{I2, [Q,P]} ⊢ {I2}c2{I1, [Q,⊥]} nocontinue

⊢ {P}for(;; c2) c1{Q, [⊥,⊥]} hoare-loop

⊢ {P}for(;; c2) c1{Q, [R⃗]}
conseq

Fig. 4 A Derivation of loop-nocontinue based on Inversion Rules and Structural Rules

triple by inversion rules, and use nocontinue to adjust the continue post-condition
of the increment step c2 to ⊥ so that we can subsequently apply hoare-loop to
obtain the triple of the new loop.

Example 5 More crucially, inversion rules enable the destruction of shallowly embed-
ded triples into smaller pieces without unfolding the definition of the triple and users
can reorganize existing “proofs” to produce new triples.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 15

For example, consider an anotated program for(;; c3) c1 ;; assert I ;; c2, where
assert I asserts that the assertion I holds between executions of c1 and c2 and it
can guide prover’s verification. Usually, the main burden of verifying a loop is to
find the loop invariant. But for this program, if we can check ⊢ {P}c1{I, [Q,⊥]} and
⊢ {I}c2 ;; c3 ;; c1{I, [Q,⊥]} to be true, then the following derivation directly proves
the triple ⊢ {P}for(;; c3) c1 ;; assert I ;; c2{Q, [⊥,⊥]} for the loop.

⊢ {P}c1{I, [Q,⊥]} ⊢ {I}c2 ;; c3 ;; c1{I, [Q,⊥]}
⊢ {P}c1{I, [Q,⊥]} ⊢ {I}c2{I2, [Q,⊥]}
⊢ {I1}c1{I, [Q,⊥]} ⊢ {I2}c3{I1, [Q,⊥]}

⊢ {P ∨ I1}c1{I, [Q,⊥]} ⊢ {I}c2{I2, [Q,⊥]} ⊢ {I2}c3{I1, [Q,⊥]}
⊢ {P ∨ I1}c1 ;; assert I ;; c2{I2, [Q,⊥]} ⊢ {I2}c3{P ∨ I1, [Q,⊥]}

⊢ {P ∨ I1}for(;; c3) c1 ;; assert I ;; c2{Q, [⊥,⊥]}
⊢ {P}for(;; c3) c1 ;; assert I ;; c2{Q, [⊥,⊥]}

conseq

loop

seq

seq-inv

With the help of seq-inv, two intermediate assertions I1 and I2 are extracted for
free. By re-ordering commands into a new loop body c2 ; ; c3 ; ; c1 using I as the
invariant, P ∨ I1 and I2 become our loop invariants and we establish the final triple
without any additional proofs. Notice that the triples we need to provide as the
premise of this derivation can be verified symbolic execution without the need to
manually construct intermediate assertions I1 and I2. This approach of using seq-
inv to rearrange program orders helps simplify the proof of this kind of loops by
making it easier to apply symbolic executions.

Summary.

In summary, inversion rules have one-to-one correspondence to primary rules.
For each primary rule, we can derive an inversion rule that produces the
premises of it from the conclusion. People often apply inversion rules to
assumptions to extract information from it and use these information to aid
their proofs. On the contrary, transformation rules and structural rules do not
have such correspondence and are applied directly to the proof goals (the Hoare
triple specification) to generate sub-goals with easier proofs. Transformation
rules change the program in the specification but keep original pre-/post-
conditions, while structural rules only have effect on pre-/post-conditions but
not the program.

Although the discussion of extended rules in this paper focuses on a pro-
gramming language with control flow commands, most of these rules are still
meaningful in a language that does not feature the control flow commands.
For example, if-seq and hoare-ex does not depend on the control flow post-
condition. And loop-unroll1 has a counterpart while-unroll for loops
without break and continue. For any programming language and program logic,
it will always have its own set of inversion rules corresponds to its primary
rules. Moreover, we believe adding other features to the language and the logic
will yield more extended rules, but they are not well studied and is not the
focus of this paper.

Springer Nature 2021 LATEX template

16 Deep Embedding v.s Shallow Embedding

3 Nomenclature

We have presented the program logic and extended rules in section 2, but did
not mention how they are formalized at all and we cannot check the correct-
ness of these extended rules until we formally define the program logic. This
section clarifies the notion of the deep embedding and the shallow embed-
ding, which are two different approaches of formalizing languages and logics.
In short, deep embeddings formalize structures while shallow embeddings
formalize underlying semantics.

A program-logic-based foundational verification tools contains at least
three elements where we could choose different embeddings: the program-
ming language, the assertion language that describe program state
properties, and the program logic that reasons about functional correct-
ness of a program. Different verification projects choose different combinations
of embeddings for these three elements as table 1 shows. For shallow embed-
dings of program logics, we could further divide them into sub-categories:
big-step based (BigS.), weakest precondition based (WP), and continuation
based (Cont.), which we will discuss in detail in section 4.

Verification Projects
Programming

Language
Program Logic Assertion

VST (before Sep. 2018) Deep Shallow (Cont.) Shallow
VST (after Sep. 2018) Deep Deep Shallow

Iris [6], Iris-CF Deep Shallow (WP) Shallow
FCSL[11] Shallow Shallow (WP) Shallow

Software Foundations [12]
Vol. 2, Vol. 6

Deep Shallow (BigS.) & Deep Shallow

Simpl [13], CSimpl [7] Deep Deep Shallow
CAP [14], XCAP [15] Deep Deep Shallow

µC [16] Deep Deep Deep

Table 1 Choices between shallow embedding and deep embedding

In the rest of this section, we explain what are shallow/deep embeddings
for a programming language, an assertion language, and a program logic.

3.1 Embeddings of Programming Languages

When formalizing a language (e.g. a programming language or an assertion
language), a deep embedding formalizes its syntax tree first and defines its
meaning separately. In contrast, a shallow embedding uses the language’s
intrinsic semantics as its definition directly. For example, figure 5 shows their
differences in defining simple program expressions which only contain integer
variables and addition. The addition operation is defined as a syntax tree con-
structor in the deeply embedded one and we use another evaluation function
to define the semantics of all expressions. In the shallowly embedded one, the
operation is directly defined as a function that computes the summation of
its operands’ evaluation results or a relation from the expression to the final
result.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 17

x : variable name σ : prog state prog state = variable name → Z

Deeply Embedded Program:
e ∈ expr := Const(n) | Var(v) | Add(e1, e2)

eval(Const(n), σ) = n

eval(Var(x), σ) = σ(x)

eval(Add(e1, e2), σ) = eval(e1, σ) + eval(e2, σ)

Shallowly Embedded Program:
expr ≜ prog state → Z
Const = λn.λσ.n

Var = λx.λσ.σ(x)

Add = λe1.λe2.λσ.e1(σ) + e2(σ)

Fig. 5 Example: deeply/shallowly embedded expressions

Most foundational verification tools including VST and Iris choose to use
deeply embedded programming languages. The deeply embedded languages
separate the syntax and semantics of programs and would allow structural
induction over the program’s syntax tree in some proofs. Comparably, typi-
cal shallowly embedded languages use functions from initial program states to
ending states, or binary relations between initial states and ending states, to
represent programs. In other words, programs are formalized in proof assistants
by their denotations instead of syntax trees, which makes it difficult to equip
them with structural inductions. It is also difficult (although not impossible
[11]) for a shallowly embedded programming language to support concurrency
and other extensions. For example, to implement concurrency, a deeply embed-
ded programming language can syntactically parallel-compose two programs
and then choose small-step semantics for describing concurrency since one can
interleave parallel steps that programs take. However, it is less convenient for
the denotational shallow embedding to implement such an interleaving. In the
denotational shallow embedding, a program expression itself is a big-step deno-
tation which hides intermediate states of its execution, so we cannot directly
define the program with other threads interleaving at this intermediate states.

In some cases, developers would also use mixed embeddings of their pro-
gramming languages [11, 16]: these languages use deep embedding to formalize
structural compositions and use shallow embedding for singleton commands.
For example, in the µC framework [16] for verifying OS kernels, Xu et. al
formalize atomic operations γ via a shallow embedding and formalize opera-
tion compositions (e.g., sequential composition s1; s2 and non-deterministic
choice s1 + s2) via a deep embedding. Thus a command s is defined by both
embeddings in the formula below.

s ∈ Command := γ | s1; s2 | s1 + s2 | end | · · ·
γ ∈ Abstract State→ Abstract State→ Prop

Springer Nature 2021 LATEX template

18 Deep Embedding v.s Shallow Embedding

Remark.

In a shallowly embedded language, transformation rules become trivial and
meaningless. For example, in if-seq rule, we have two programs defined below.

if e then c1 ;; c3 else c2 ;; c3 ≜ λσ.match eval(e, σ) with | false⇒ c3(c1(σ))

| true⇒ c3(c2(σ)).

if e then c1 else c2 ;; c3 ≜ λσ. c3(match eval(e, σ) with | false⇒ c1(σ)

| true⇒ c2(σ)).

They are exactly the same function in the meta-language and will satisfy the
same Hoare triple. Proofs of structural rules and inversion rules for a shallowly
embedded language is similar to their proofs in a big-step based shallowly
embedded program logic (section 4.1) since both uses big-step semantics to
define the semantics. In general, deeply embedded programming languages are
more interesting and we will mainly discuss it in this paper.

3.2 Embeddings of Assertion Languages

To reason about a program’s effect on program states, a Hoare-style program
logic uses an assertion language to describe program state. A shallowly embed-
ded assertion is a predicate in the meta-logic which directly defines the set of
states. A deeply embedded assertion language specifies syntax trees of asser-
tions first and then defines how to interpret assertions as sets of states. For
example, figure 2 defines a deep embedding of an assertion language. And
figure 6 defines a shallow embedding of the assertion language (only a snippet
of it), which is also the interpretation for the deeply embedded one.

⊤ := λσ.True ⊥ := λσ.False P ∧Q := (λσ. σ ⊨ P and σ ⊨ Q)
[[e]] = v := (λσ. eval(e, σ) = v) P [x 7→ e] := (λσ. σ ⊨ P [x/eval(e, σ)]) · · ·

Fig. 6 The shallowly embedded assertion language

Unlike programming languages, we observe that shallowly embedded asser-
tion languages are generally preferred by program verification framework
developers, as table 1 indicates that almost all existing works rely on an
shallow assertion language. The reason is that the shallowly embedded asser-
tion often has more expressiveness. For one fixed deeply embedded assertion
language, we need to define its interpretation in the meta-logic. This interpre-
tation is a meta-logic function from assertions’ syntax trees to sets of program
states, i.e., [[·]] ∈ Assertiondeep → state → Prop. Thus, the expressiveness of
this deep embedding is no stronger than the expressiveness of “sets of states”,
as which the assertion language is formalized in a shallow embedding, i.e.,
Assertionshallow ≜ state→ Prop.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 19

The cause of different embedding choices for the programming language and
the assertion language is the difference in the object they describe. Assertion
languages describe static objects, i.e. an assertion is always used to determine
a set of program states. Thus, it is suitable to directly model assertions as
sets. Comparably, programming languages describe dynamic objects, transi-
tions of program states. Verification projects for different real programming
languages need to embody different features of those languages, e.g., concur-
rency. However, there exists no simple shallow embedding of a programming
language that can describe these features concisely, e.g., we have mentioned
in previous part that denotational shallow embeddings are difficult to express
concurrency. Therefore, formalizing different programming languages’ syntax
in deep embeddings is preferred than directly using shallow embeddings.

In this paper, we will stick to the shallow embedding of assertion languages
defined in figure 6.

3.3 Embeddings of Program Logics

When formalizing logics9 (e.g. the propositional logic or a Hoare logic), a shal-
lowly embedded logic defines a statement to be valid directly using semantics.
We mainly consider the partial correctness in this paper, and one common
definition of shallowly embedded Hoare triple is: ⊨ {P}c{Q} iff. for any initial
state σ1, if σ1 satisfies assertion P , then the execution of c from σ1 does not
cause error; and for and any ending state σ2 reachable from σ1 in the execu-
tion of c, σ2 satisfy Q. Verification tool developers can prove many properties
about valid triples and use them as “proof rules” to assist users in program
verification. In practice, there are different ways to shallowly embed a program
logic, which we discuss in section 4.1, section 4.2, section 4.3.

In contrast, a deeply embedded logic formalizes the proof tree inductively
by giving admitted proof rules, and we say a statement is provable under the
logic, denoted by ⊢ {P}c{Q}, iff. it can be constructed from these proof rules.
Users of a verification tool can use these proof rules to build a proof tree of
their program specifications.

To ensure proof rules given in a deeply embedded logic are consistent with
program behaviors, one needs to additionally prove the logic sound, that is,
every provable statement is also valid, i.e., for any statement S, if ⊢ S then
⊨ S. In simple and common cases, this soundness theorem can be proved by
induction over proof trees, i.e. it suffices to prove that every proof rule will
always generate valid Hoare triples from valid triples. Using the sequential rule
(hoare-seq) as an example,

hoare-seq
⊢ {P}c1{Q} ⊢ {Q}c2{R}

⊢ {P}c1 ;; c2{R}

9In this paper, we mainly discuss the embedding of “program logic” and will use “logic” for
short without ambiguity.

Springer Nature 2021 LATEX template

20 Deep Embedding v.s Shallow Embedding

the induction step is to prove:

⊨ {P}c1{Q} and ⊨ {Q}c2{R} imply ⊨ {P}c1 ;; c2{R} (6)

In comparison, there is no counterpart of this soundness property when using a
shallowly embedded logic. To use this sequential rule in a shallowly embedded
logic, one need to directly prove property (6). This fact implies that the imple-
mentation of a sound deeply embedded program logic always accompanies an
underlying shallowly embedded one.

In some nontrivial cases, one has to introduce an auxiliary validity defini-
tion ∥= S in order to prove the soundness of a logic in two steps: (1) for any
triple S, prove ⊢ S implies ∥= S by induction over the proof tree; (2) show that
∥= S does imply ⊨ S by semantic analysis. For example, Brookes’s concur-
rent separation logic soundness proof [17] uses this technique. In comparison,
a shallow embedding strategy will directly formalize the auxiliary validity, and
establish “proof rules” based on it. The fact that ∥= S implies ⊨ S is still
necessary and should be proved separately, and it is also called “the adequacy
property” [6] in some literature. We discuss this soundness proof technique
later in section 8.6.

In conclusion, we can choose arbitrary combinations of shallow/deep
embeddings among the programming language, the assertion language, and
the program logic to instantiate a foundational verification tool. In this paper,
we mainly focus on a deeply embedded programming language and a shallowly
embedded assertion language, but consider different embeddings of program
logics which we will discuss soon in section 4.

4 Different Embeddings of Program Logics

As we have mentioned, there exists different ways to embed a program logic.
In this section, we will present four mainstream embeddings of Hoare logic
from our survey of existing verification projects: a deep embedding and three
different shallow embeddings.

Based on this language, this section then use three different shallow embed-
dings (section 4.1, section 4.2, section 4.3) and a deep embedding (section 4.4)
to formalize program logics. For each embedding method, we also demonstrate
which existing Hoare-logic-based verification projects and how do their pro-
gram logic fit into the category as table 1 shows. Under each formalization,
the chosen primary rules in figure 2 are sound.

Meanwhile, there also exists other non-Hoare-logic based verification
approaches and some Hoare-logic based framework may also employ non-
Hoare-logic based reasoning styles, which we discuss in section 4.5.

Verification projects we review in this section all have certain unique fea-
tures and complex mechanisms and it is difficult to cover all of them, e.g.,
verification supports for concurrency. Some also do not support control flow

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 21

reasoning and we do not discuss how to extend them with control flows to sup-
port our toy language. We only discuss some basics of their embeddings and
related features that can classify them into each category.

4.1 Big-step (BigS.) based Shallow Embedding

Figure 7 describes notations defining the big-step semantics of the While-CF
language, where (c, σ1) ⇓ (ek, σ2) states that from program state σ1, the pro-
gram c may terminate with exit kind ek, which could be normal exit, denoted
by ϵ, or break, continue exit, and the state will be changed to σ2. We use (c, σ) ⇑
to denote that an error would occur for the execution of c from state σ. The
big-step semantics is defined recursively, e.g., the semantics of the sequencing
command is Seq1 and Seq2. For the sake of space, we put the full definition
(which is standard) in appendix A.

ek ∈ exit kind := ϵ | brk | con σ ∈ state
Big-step Relation: (c, σ1) ⇓ (ek, σ2) Error: (c, σ) ⇑

Seq1

(c1, σ1) ⇓ (ϵ, σ3)
(c2, σ3) ⇓ (ek, σ2)

(c1 ;; c2, σ1) ⇓ (ek, σ2)
Seq2

(c1, σ1) ⇓ (ek, σ2)

(c1 ;; c2, σ1) ⇓ (ek, σ2)

Fig. 7 Notations for Big-step semantics

Based on this big-step semantics, a triple is defined to be valid,
⊨b {P}c{Q, [Rbrk, Rcon]}, iff. for any σ1 satisfying precondition P , (1) the
execution of c from σ1 is safe and does not cause error, and (2) if the
execution terminates, the ending program state satisfies the corresponding
post-condition.

⊨b {P}c{Q, [Rbrk, Rcon]} iff. for all σ1 ⊨ P , ¬ (c, σ1) ⇑
and for all ek, σ2, if (c, σ1) ⇓ (ek, σ2)
then ek = ϵ implies σ2 ⊨ Q
and ek = brk implies σ2 ⊨ Rbrk

and ek = con implies σ2 ⊨ Rcon

Related Projects.

Klein et al. [18] formalizes an imperative functional programming language
in Isabelle/HOL, which is a shallowly embedded one using the state monad in
HOL. Based on this language, Lammich [19] builds a logic in big-step based
shallow embedding in Isabelle/HOL. The logic embedding is almost identical
to the one discussed above, but they do not consider control flows and only
require the ending state of the normal exit to satisfy the post-condition. Thus
their definition does not have the last two conjuncts above. Based on Lam-
mich’s logic [19], Zhan [20] verifies imperative implementations of some data

Springer Nature 2021 LATEX template

22 Deep Embedding v.s Shallow Embedding

structures in Isabelle/HOL using its auto2 prover [21]. Nipkow’s Hoare logic
in Isabelle/HOL [2, 22] also uses big-step embedding. Many verification has
been performed based on these logics in Isabelle, e.g., Lammich and Nipkow
[23] proves the correctness of priority search tree and Prim’s and Dijkstra’s
algorithm in Isabelle.

In Cook’s famous Hoare logic’s soundness and completeness proof [9], it
uses big-step based shallow embedding as the logic’s validity definition and
proves many properties including logic’s soundness and completeness w.r.t. it.

Software foundation [12] is a famous textbook for teaching Coq formal-
ization. Its second volume introduces Hoare logics both in the big-step based
embedding and the deep embedding, where the former is also the validity defi-
nition of the latter. Its sixth volume introduces the separation logic built with
the big-step based embedding. The simplicity of the big-step based embedding
makes it a good introduction of the Hoare logic and the separation logic for
beginners.

4.2 Weakest Precondition (WP) based Shallow
Embedding

Another shallow embedding method is to embed the logic using the weak-
est precondition defined by small-step semantics. We want to emphasize that
the weakest precondition here is directly defined by semantics instead of an
encoding by some existing Hoare logic.

We use (c, κ, σ)→c (c
′, κ′, σ′) to describe a small-step in command reduc-

tion and →∗
c to describe the reflexive transitive closure of →c. The small-step

reduction is a binary relation between triples of the focused term10 c, the
continuation (control stack) κ, and the program state σ. The control flow com-
mands makes it slightly different from text book definitions. We mainly follows
CompCert Clight’s definition style and list most important semantic rules in
figure 8.
(1) When the focused term begins with a for loop, it pushes the loop into the

control flow stack and loads the loop body (followed by continue) into
the focused term.

(2) When the increment step for previous iteration finishes, it loads the loop
body for next iteration11.

(3) When the focused term reduces to continue, it loads the increment step
c2 and updates the innermost loop’s continuation to Kloop2.

(4) When the focused term reduces to break, it pops the innermost loop and
sets the program to skip to continue execute the remaining control stack.

(5), (6) When the focused term reduces to continue or break, it will
keep skipping KSeq continuations. As a result, if an execution from
(c, κ, σ) terminates, it must terminate at (skip, ϵ,), (break, ϵ,), or
(continue, ϵ,).

10The focused term is the next command to execute and is so named in some literature.
11KLoop1(c1, c2) means in-loop-body, and KLoop2(c1, c2) means in-increment-step.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 23

κ ∈ continuation := ϵ | KSeq(c) · κ | KLoop1(c1, c2) · κ | KLoop2(c1, c2) · κ

((for(;; c2) c1), κ, σ)→c (c1 ;; continue,KLoop1(c1, c2) · κ, σ)
(1)

(skip,KLoop2(c1, c2) · κ, σ)→c (c1 ;; continue,KLoop1(c1, c2) · κ, σ)
(2)

(continue,KLoop1(c1, c2) · κ, σ)→c (c2,KLoop2(c1, c2) · κ, σ) (3)

(break,KLoop1(c1, c2) · κ, σ)→c (skip, κ, σ) (4)

(continue,KSeq(c) · κ, σ)→c (continue, κ, σ) (5)

(break,KSeq(c) · κ, σ)→c (break, κ, σ) (6)

Fig. 8 Notations for Small-step semantics

Shallowly embedded weakest pre-condition can be defined on this small-
step semantics. We use σ ⊨ WP(c, κ){Q, [R⃗]} to denote that a program
state σ satisfies the weakest pre-condition for the focused program c and the
continuation κ with post-conditions Q and [R⃗]. The WP is defined as the

largest set such that σ ⊨ WP(c, κ){Q, [R⃗]} iff.
• Terminal Case: κ is ϵ and (1) c = skip and σ ⊨ Q or (2) c = break

and σ ⊨ Rbrk or (3) c = continue and σ ⊨ Rcon;
• Preservation Case: Or (c, κ, σ) can be further reduced by →c. And
for any c′, κ′, σ′ such that (c, κ, σ) →c (c′, κ′, σ′), it still has σ′ ⊨
WP(c′, κ′){Q, [R⃗]}.

The terminal case ensures that the ending program state will satisfy post-
conditions, and the preservation case guarantees that it can always step
forward and eventually reach an ending state satisfying post-conditions.

A triple is defined to be valid under the weakest precondition based shallow
embedding, ⊨w {P}c{Q}, iff. for any state σ satisfying precondition P , we

have σ ⊨ WP(c, ϵ){Q, [R⃗]}.

Remark.

The definition of the co-inductive weakest precondition above uses the Tarski
fixed point theorem [24].

Theorem 1 (Tarski fixed point theorem) For a complete lattice (L,≤) and a mono-
tone function f : L → L, the set of all fixed points of f is also a complete lattice
with sup{x ∈ L |x ≤ f(x)} as the greatest fixed point.

We can also define it using the Bourbaki-Witt fixed point theorem [25, 26],
which is used by many existing frameworks to define the weakest precondition
based embedding and is used in our Coq formalization.

Springer Nature 2021 LATEX template

24 Deep Embedding v.s Shallow Embedding

Theorem 2 (Bourbaki-Witt fixed point theorem) If (X,≤) is a non-empty complete
ordered chain, and f : X → X satisfies f(x) ≥ x forall x, then f has a fixed point.
For some x0 ∈ X, let g : N → X be a function with

g(0) = x0 g(n+ 1) = f(g(n)),

then limn→∞ g(n) is a fixed point.

Below is a formal definition of the weakest pre-condition using the
Bourbaki-Witt greatest fixed point. We use an ordinal number n to bound the
number of small-step reductions until termination and the limit of WP(n, c, κ)
when n goes to infinite defines the weakest precondition.

σ ⊨ WP(n, c, κ){Q, [R⃗]} iff.

κ = ϵ ∧ n = 0∧ (c = skip ∧ σ ⊨ Q)∨

(c = break ∧ σ ⊨ Rbrk)∨
(c = continue ∧ σ ⊨ Rcon)

 (7)

∨

 n > 0 ∧ reducible(c, κ, σ)

∧∀c′, κ′, σ′.(c, κ, σ)→c (c
′, κ′, σ′)

⇒ σ′ ⊨ WP(n− 1, c′, κ′){Q, [R⃗]}

σ ⊨ WP(c, κ){Q, [R⃗]} iff. ∀n ∈ N.σ ⊨ WP(n, c, κ){Q, [R⃗]} (8)

Both definition of the weakest precondition using the greatest fixed point
are just approach to define a co-inductive type. Although we can directly
write a co-inductive definition in Coq, using the Bourbaki-Witt fixed point
approach makes proofs easier and thus we use it in our Coq formalization. We
use the Tarski fixed point approach in the paper (here and in section 4.3 for
safe(c, κ, σ)) for a clear presentation.

If the reader is familiar with the step-index technique [27], they may find
that a meta-logic equipped with step-indices (e.g., Iris [6]) can easily define the
weakest precondition as the Bourbaki-Witt fixed point. The step-index can be
used as the ordinal number n and there are lots of infrastructures (e.g., the
later modality ▷) to support the definition. But in general, step-indexing is not
necessary for the shallowly embedded weakest precondition as we have shown
here and in our Coq formalization. It is necessary only when the definition
involves recursive types that are not inductive. For example [6], we cannot give
an inductive definition for the type iProp below, since iProp has non strictly
positive occurrence in this definition.

iProp := Res→ Prop where Res := F (iProp) is parameterized by iProp

If the state model and the language semantics does not rely on these non-
inductive types, then the weakest precondition’s definition obviously needs no
step-index. We refer interested readers to Appel and McAllester’s work on the
step-indexed model [27] for more details about the step-indexing technique.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 25

Related Projects.

Fine-grained Concurrent Separation Logic (FCSL) [11] is a framework for ver-
ifying concurrent programs. It uses mixed embedding for its programming
language and a weakest precondition based shallow embedding for its program
logic. Its program is defined by an action tree, where each edge, the atomic
action, is defined by a transition between state, i.e., a shallow embedding. In
the action tree’s syntax definition below, ω is a leaf node indicating the diver-
gence of a thread and ret v is a leaf node indicating the termination of a thread
with return value v. The concatenation a :: k of the action a and the context
k is the sequential execution a and k with a’s result as arguments. Similarly,
parallel composition (t1∥t2) :: k first interleaves executions of tree t1 and t2
and passes their results to the context k.

t, t1, t2 ∈ Tree := ω | ret v | a :: (k : Val→ Tree)
| (t1∥t2) :: (k : Val×Val→ Tree)

a ∈ Action := state→ state→ Prop

The definition below is FCSL’s [11] embedding of their Hoare triple (we
omit details about concurrency). The always predicate (9) is similar to our
weakest precondition’s definition, which asserts that the memory safety at each
step and at each step the assertion P should hold for the program state and
the action tree. This assertion of always predicate in the Hoare triple (11)
ensures that the post-condition holds at leaf nodes. It also uses the Bourbaki-
Witt fixed point approach to define the weakest precondition The k in (9)(10)
serves the purpose of an ordinal number.

alwaysk σ tQ iff. memsafe(σ, t) ∧Q(σ, t)∧ (9)

∀σ′, t′. (k > 0 ∧ ((σ, t)→ (σ′, t′)))⇒ alwaysk−1 σ′ t′ Q

alwaysσ tQ iff. ∀k ∈ N. alwaysk σ tQ (10)

⊨ {P}c{Q} iff. ∀σ. σ ⊨ P ⇒ alwaysσ t (λσ, t. ∀v. t = Ret v ⇒ Q(σ, v)) (11)

Iris is a higher order concurrent separation logic for verifying correctness
of functional programs. It uses deeply embedded λ-calculus-like programming
languages and the weakest precondition based embedding. When concurrency
is not involved (section 6.3.2 of [6]), Iris embeds their logic by weakest pre-
conditions below as a separation logic proposition in Iris (iProp).

WP e {Φ} ≜ (e ∈ Val ∧ Φ(e)) (12)

∨
(
∀σ. e /∈ Val ∧ S(σ)−∗

(
reducible(e, σ)

∧ ▷∀e′, σ′. ((e, σ)→t (e
′, σ′))−∗ (S(σ′) ∗WP e′ {Φ})

))
(13)

The first disjunct (12) asserts that if the expression e is now a value, then the
evaluation has terminated and the program state and the evaluation result e
should satisfy Φ. The second disjunct (13) specifies behaviors when e is not

Springer Nature 2021 LATEX template

26 Deep Embedding v.s Shallow Embedding

an terminal and should be further reduced. S(σ) injects program state σ into
an iProp. The disjunct (13) will first consume a piece of memory injected
by σ and asserts that expression e is reducible with this piece of memory
(reducible(e, σ)). And for any new expressions e′ and σ′ it can reduce to
by small-step semantics →t, we can still have the memory S(σ′) it reduces
to and the new expression e′ still preserves the weakest pre-condition. Iris’s
propositions iProp uses the step-index to solve the circularity when defining
higher-ordered ghost states, which happens to be a suitable choice of the ordi-
nal number in the definition of the co-inductive weakest precondition. The later
modality ▷ here reduces the step-index (the ordinal number) in the weakest
precondition WP e′ {Φ} at the next step.

Iris’s Hoare triple12 {P}e{Φ} is embedded as P−∗WP e {Φ}. We can observe
that Iris’s embedding is very similar to our prototypical weakest precondition
based embedding, and in section 9.2, we will use Iris as an example under the
functional program setting to demonstrate our research into extended proof
rules.

FCSL and Iris both support concurrent program verifications through
mechanisms of angelic updates (view shifts in Iris). Iris is also extended
to support prophecy variables [28]. However, these features are out of this
paper’s scope. For simplicity, definitions in this section only consider sequen-
tial programs and remove features supporting concurrency. For the complete
definition, readers may refer to their original papers [6, 11].

4.3 Continuation (Cont.) based Shallow Embedding

Continuation based shallow embedding defines the Hoare triple through Hoare
tuple {P}(c, k), pronounced P guards (c, k), which asserts that program c
and continuation k can safely executes from program states satisfying the
pre-condition P . A triple {P}c{Q, [R⃗]} is valid iff. for arbitrary continuation κ,

if

{Q}(skip, κ)
{Rbrk}(break, κ)
{Rcon}(continue, κ)

then {P}(c, κ).

It states that for any continuation that safely executes from different post-
conditions with corresponding exit kind, it should safely executes after program
c’s execution from the pre-condition.

An assertion P guards the execution of a program c and a continuation κ,
{P}(c, κ), iff. for any program state σ satisfying the pre-condition P , we have
safe(c, κ, σ), which is the largest set of configurations with following properties.

• Terminal Case: κ is ϵ, and c is skip, break, or continue;
• Preservation Case: Or (c, κ, σ) can be further reduced by →c, and for
any (c′, κ′, σ′) it reduces to, we should have safe(c′, κ′, σ′).

12It is worth mentioning that Iris also provides mechanisms to directly reason about weakest
preconditions, which makes it less like a Hoare-logic based framework. We discuss the weakest
precondition based verification method in section 4.5.2.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 27

Related Projects.

The original shallowly embedded VST [4] uses a deeply embedded program-
ming language and a program logic in continuation based shallow embedding.
The Hoare triples in shallowly embedded VST extends our definition with
function invocations and concurrent separation logic. Besides these features,
which we discuss later in section 9.1, its embedding is almost identical to the
prototypical definition above.

4.4 Deep Embeddings

As clarified in section 3, a deep embedding of a program logic is a proof system
with inductively defined proof trees. Different deep embeddings of program
logics with fixed languages and forms of judgement have different sets of admit-
ted proof rules. For example, we may consider a proof system with primary
proof rules from figure 2 as an example deep embedding. In Coq, it is easy
to define the deep embedding with an inductive relation shown below. Here,
provable P c Q Rb Rc stands for the Hoare triple ⊢ {P}c{Q, [Rb, Rc]}.

1 Inductive provable: Assertion → com → Assertion (* normal post *) →
Assertion (* break post *) → Assertion (* continue post *) → Prop :=

2 | hoare_skip: forall P, provable P skip P bot bot

3 | hoare_break: forall P, provable P break bot P bot

4 | hoare_continue: forall P, provable P continue bot bot P

5 | hoare_seq: forall c1 c2 P P’ Q Rb Rc,
6 provable P c1 P’ Rb Rc → provable P’ c2 Q Rb Rc →
7 provable P (c1 ;;c2) Q Rb Rc

8 | hoare_loop: forall c1 c2 P I Q,
9 provability P c1 I Q I → provable I c2 P Q bot →

10 provable P (for(;; c2) c1) Q bot bot

11 | · · ·.

An arbitrary set of admitted proof rules may not be correct, and we need
to prove the soundness of such proof system. To do so, we need to define
the validity of a logic judgement, i.e., the corresponding shallowly embedded
logic. We can prove the soundness by showing that each proof rule is valid
in the shallow embedding and the shallowly embedded logic is sound. We can
easily prove primary proof rules in figure 2 to be valid under all three shallow
embeddings in section 4.1, section 4.2, section 4.3.

Related Projects.

Simpl [13] is a tool in Isabelle/HOL for verifying sequential programs, which
has been used to verify seL4 code [29]. It uses deeply embedded program-
ming language and program logic. Its judgement is ⊢ {P}c{Q,Qek} with the
following validity definition.

⊨ {P}c{Q,Qek} ≜ ∀σ1, σ2. σ1 ∈ Normal P →
⟨c, σ1⟩ ⇓ σ2 → σ2 ̸∈ Fault→
σ2 ∈ Normal Q ∪ Abrupt Qek

Springer Nature 2021 LATEX template

28 Deep Embedding v.s Shallow Embedding

It says after the execution from program states satisfying the precondition,
if the ending state is not a fault one, then it satisfies the normal and abrupt
post-conditions depending on its exit kind.

CSimpl [7] is a framework for concurrent program verification based on rely
guarantee reasoning. Its programming language is a deeply embedded impera-
tive language supporting concurrency. Their logic is deeply embedded by giving
inference rules of the logic with judgement R,G ⊢ {P}c{Q,Qek}, where P is
pre-condition and Q,Qek are normal and control flow post-conditions respec-
tively. They choose to use rely-guarantee method to reason about concurrency,
and use R,G to specify the rely and guarantee of a program. The judgement
specifies how the environment can modify (R) and what a program can do
(G) to the shared resource. To show the soundness of their proof system, they
define judgement’s validity in three steps.

• They use assum(c, P,R) to denote a set of small-step reduction steps of
c (lists of intermediate commands and states) from pre-condition P and
under environment interference R.

• They use comm(G,Q,Qek) to denote a set of reduction steps that obey
guarantee G and have terminal state satisfying post-conditions Q, a.

• The judgement R,G ⊢ {P}c{Q,Qek} is valid iff. assum(c, P,R) is a
subset of comm(G,Q,Qek). The inclusion implies any trace of c from pre-
condition P and under rely R, will terminate in post-conditions Q,Qek

and generate guarantee G.
The definition of the set comm(G,Q,Qek) is almost identical to the weak-
est precondition in section 4.2 but with extra guarantee constraints on the
program’s behaviors. In conclusion, CSimpl uses deeply embedded logic with
weakest precondition based shallow embedding as its validity.

Certified assembly program (CAP) [14] and XCAP [15] use deeply embed-
ded language and deeply embedded logic with judgement ⊢ {P} c to verify
assembly programs. The logic guarantees that an assembly program c can exe-
cute safely if the program state satisfies the pre-condition P . They formalize
the logic with a set of inference rules as its deep embedding and prove the
soundness under the continuation-based shallow embedding. Their objective
is to verify program’s safety instead of functional correctness, therefore the
judgement and logic looks different from the one in our paper.

Xu et al. [16] develop µC, a framework for verifying preemptive operating
systems. The framework uses deeply embedded program logic. The logic is
proven sound w.r.t. a weakest precondition based shallow embedding, which
is similar to those in section 4.2.

Software foundation [12] introduces a toy example of a deeply embedded
Hoare logic with big-step based shallow embedding as its validity, as we have
mentioned in section 4.1.

4.5 Other Logic based Verification Methods

So far, we have discuss four Hoare logic embeddings and foundational verifi-
cation frameworks that use these embeddings. Most of these frameworks use

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 29

Hoare triples as program specifications and prove them mainly by applying
proof rules to Hoare triples, which we refer to as Hoare-logic-based verification.
Nevertheless, there exists other logic based verification methods that do not
use Hoare triples and Hoare logics as their primary tools. And some verification
frameworks that encodes Hoare triples in their logic may feature verification
technique that is non Hoare-logic-based.

In this section, we will briefly review some non-Hoare-logic-based veri-
fication techniques: Hoare monad and Dijkstra monad in section 4.5.1, Iris
(weakest precondition based verification) in section 4.5.2, and Characteristic
Formulae in section 4.5.3. It is not clear whether these approaches is better
than pure Hoare-logic based ones, and the comparison among them is not the
focus of this paper.

4.5.1 Hoare Monad & Dijkstra Monad

Instead of Hoare logic, we can also use Hoare monad and Dijkstra monad to
assert and verify the correctness of a program. Based on their Hoare type the-
ory [30], Nanevski et al. [31] type a program using the Hoare monad STP AQ,
where the type of the program asserts the its execution from state satisfying
the pre-condition P will return with a value of type A, and the return value
and the ending state will satisfy the post-condition Q over both the return
value and the program state. The type of a large program is derived from types
of statements that assembles it.

bind-hst
⊢ e1 : (x : B)→ ST (Rx)AQ ⊢ e2 : STP BR

⊢ (e1 e2) : STP AQ

For example, the rule above defines how to compose two Hoare monad through
the bind operation (lambda function application), which is similar to the
hoare-seq rule. The type of e1 e2 is derived by the type of e1 and e2.

The typing proof of Hoare monad cannot be easily automated due to some
existential quantifiers over some intermediate program state. A series of works
[32–35] develops Dijkstra monad to improve the automation of such technique
and allow reasoning about program with more features like exception, non-
determinism, and IO. Different from Hoare monad, Dijkstra monad types a
program as WP STAwp, a predicate transformer mapping a postcondition of
the computation to its precondition, where A is the return type and wp is a
weakest precondition. The weakest precondition wp is of the type

(A× state→ Prop)→ state→ Prop

which is exactly a predicate transformer from the postcondition to the
precondition. Below shows the typing rule for the bind in Dijkstra monad.

bind-dst
⊢ e1 : (x : B)→ WP STA (wp1 x) ⊢ e2 : WP STB wp2
⊢ (e1 e2) : WP STA (λQs.wp2 (λx s1.wp1 xQs1) s)

Springer Nature 2021 LATEX template

30 Deep Embedding v.s Shallow Embedding

This rule composes predicate transformers wp1 x (parameterized over the
return value x) and wp2 into a new one to type e1 e2.

The typing of programs as Hoare monads and Dijkstra monads resembles
the definition of the program’s big-step semantics, as all of them are defini-
tions by structural induction over the program’s syntax. Still using the bind
operation as an example, bind-bigs defines the big-step semantics of e1 e2.

bind-bigs
(e1 x, σ3) ⇓ (v, σ2) (e2, σ1) ⇓ (x, σ3)

(e1 e2, σ1) ⇓ (v, σ2)

It is similar to bind-hst except that the relationship between the beginning
state and ending state defined in bind-bigs becomes the relationship between
the precondition and postcondition in bind-hst. This similarity is even more
obvious in bind-dst, where programs’ effects on the pre/post-conditions are
composed instead of composing their effects on the program state.

4.5.2 Weakest Precondition based Verification

In section 4.2, we have embedded a Hoare triple using the weakest precon-
dition: ⊨w {P}c{Q}, iff. for any state σ satisfying precondition P , we have

σ ⊨ WP(c, ϵ){Q, [R⃗]}. Although we will use the Hoare logic to reason about
triples using this embedding, it is also possible to directly reason about the
weakest precondition, which is the approach taken by Iris [6].

We use the if-seq rule to demonstrate the weakest precondition
based verification method and its advantage. Suppose we want to prove
{P}(if e then c1 else c2) ; ; c3{Q} in Iris for some c1, c2, c3, e. It is equiva-
lent to prove that P −∗WP((if e then c1 else c2) ;; c3){Q}, which has the
following weakest precondition derivation (14).

(P ∗ [[e]] = true)−∗WPc1{λv.WP(v ;; c3){Q}} (†)
(P ∗ [[e]] = false)−∗WPc2{λv.WP(v ;; c3){Q}} (‡)
P −∗WP(if e then c1 else c2){λv.WP(v ;; c3){Q}}

wp-if

P −∗WP((if e then c1 else c2) ;; c3){Q}
wp-bind

(14)

We can first apply thewp-bind rule to hide the second part c3 of the sequential
composition into the post-condition as another weakest precondition. Then,
by wp-if rule, we need to prove the weakest preconditions of two branches, (†)
and (‡), separately. Then, take (†) for example, we can further symbolically
execute c1 in Iris’s weakest precondition calculus until it reaches a terminal
value v1 with the memory satisfying P ′. Then by wp-val and wp-seq, we
can further reduce the proof goal into a weakest precondition only about the
remaining c3 and eventually reach a tautology after symbolic executions of c3’s
weakest precondition. We can do a similar proof for the other branch (‡) as

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 31

well.
...

P ′ −∗WPc3{Q}
P ′ −∗WP(v1 ;; c3){Q}

wp-seq

P ′ −∗WPv1{λv.WP(v ;; c3){Q}}
wp-val

...

(P ∗ [[e]] = true)−∗WPc1{λv.WP(v ;; c3){Q}} (15)

As we can see, the proof of two branches (†) and (‡) is exactly the proof of
two branches of if e then c1 ; ; c3 else c2 ; ; c3. The ability to put future
computations (like c3 in this example) into the post-condition and postpone
their proofs essentially makes extended rules like if-seq for free.

Users of Iris mainly use this kind of symbolic execution for weakest pre-
condition, instead of the symbolic execution for Hoare triples. Therefore, most
of our discussions about extended rules do not apply to the Iris framework.
In section 9, we use Iris’s embedding (since they are relatively easy to use) of
Hoare logic to demonstrate how our theory apply to some weakest precondi-
tion based embedding. But it is only for demonstration, and if provers want to
use Iris in reality, they may want to use Iris’s weakest precondition calculus.

4.5.3 Characteristic Formulae

Charguéraud [36–38] uses characteristic formulae to verify programs and builds
CFML above its logic for the verification of imperative Caml programs.
The main idea of characteristic formulae is to define a function cf of type
command → (assertion → assertion → Prop). The result cf(c) defines the
relationship between the precondition and the postcondition of command c’s
Hoare triple. For example, the result for the sequential composition is defined
below.

cf(c1 ;; c2) ≜ λP. λQ. ∃R. cf(c1)P R ∧ cf(c2)RQ (16)

This formalization is highly similar to the deeply embedded Hoare logic. The
proof tree for a program in a deeply embedded Hoare logic is built recursively
according to the program’s syntax tree. While a characteristic formulae is also
generated recursively according to the program’ syntax tree in a similar fash-
ion. For example, the definition (16) resembles the deeply embedded sequence
rule below.

seq
⊢ {P}c1{R} ⊢ {R}c2{Q}

⊢ {P}c1 ;; c2{Q}
After a characteristic formulae is generated, provers can then verify in the

meta-logic whether it satisfies the specification they want to prove. In this way,
they can directly apply features in the meta-logic (usually the one directly
supported by the interactive theorem prover like Coq) to do the proof.

Springer Nature 2021 LATEX template

32 Deep Embedding v.s Shallow Embedding

On the other hand, the characteristic formulae generator cf is proved sound
w.r.t. a big-step semantics,

∀c, P,Q. cf(c)P Q⇒⊨b {P}c{Q} (17)

which makes the framework foundational. Here, the soundness definition (17)
is a simplified version using the big-step based embedding (but without control
flows) introduced in section 4.1, while the original definition in Charguéraud’s
work [37] also considers features like separation logics.

5 Proving Extended Rules in Different
Embeddings

So far, we introduced three categories of extended proof rules in section 2
and reviewed four dominant embedding methods for Hoare logic in section 4.
This section investigates into proofs or disproofs of these rules under different
embedding methods. Before that, we first demonstrate why such research is
non-trivial.

Different embeddings define different sets of triples. Given a Hoare
logic embedding ⊨, we use it to define a set of all triples that are satisfiable
under the embedding as {S | ⊨ S}. For two different embeddings ⊨1 and ⊨2, if
there exists some triple S such that ⊨1 S ⇎ ⊨2 S, then we know sets {S | ⊨1 S}
and {S | ⊨2 S} are not equal. Typically, a property holds for elements in one
set does not necessarily hold for those in a different set. Extra elements in a
different set may not satisfy the property. As a result, a rule admissible in
one embedding is not necessarily admissible in another embedding.

• Shallow embeddings we have considered so far define different sets of
triples. Although it is possible to bridge the big-step based embedding
and the weakest precondition based embedding by proving the equiva-
lence of two semantics, the equivalence between these embeddings and
the continuation based one is not trivial and we believe that they define
different sets of triples.

• The deep embedding in this paper defines different sets of triples. This
is true unless the deep one is proven both sound and complete w.r.t. the
shallow one. However, completeness is usually not necessary for a program
verification tool because users mainly require the correctness (soundness)
of the tool. It is also too challenging to give the completeness proof for a
complex program logic. Therefore, we assume the deeply embedded logic
is not complete.

In conclusion, some extended rule admissible in one of four embeddings
may not be admissible in the others. It is necessary to check whether each
extended rule holds under each of these embeddings.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 33

Proof Rule
Deep Embedd

(section 5.1)
Big-step

(section 5.2)
Weakest Pre.
(section 5.3)

Continuation
(section 5.4)

seq-inv Simple Simple
Medium:

By Simulationb

Difficult:
By Simulation

& Constructionc

nocontinue Simple Simple
Medium:

By Simulation

Difficult:
By Simulation

& Constructionc

if-seq Simple Simple
Medium:

By Simulation
Medium:

By Simulation

loop-nocontinue Simple Simple
Medium:

By Simulation
Medium:

By Simulation
hoare-ex Difficulta Simple Simple Simple

(a) hoare-ex holds in deeply embedded logic, but the proof is complicated and requires
impredicative assertions.
(b) seq-inv holds for our toy logic with weakest precondition based embedding, but Iris’s
weakest precondition definition, which also uses this embedding, is special and seq-inv fails in
Iris. We explain this in section 9.2.
(c) Many proofs in the continuation based embedding are intricate. We can prove nocontinue
and seq-inv with complex constructions of continuation κ. But the feasibility of such
construction and the complexity of relevant proofs remains unknown for different and more
complicated programming languages.
(d) The deep embedding and its proofs are implemented in our deeply embedded VST, which is
integrated into the VST repository (https://github.com/PrincetonUniversity/VST).

Table 2 Extended Proof Rules in Different Embedding Methods

We find all extended rules in figure 3 can be proved for all four embeddings,
but some proofs are complicated and some proof obligations may be unrea-
sonably heavy in reality for a more complex language. We list our techniques
to overcome these difficulties in table 2 and make some brief comments here.

• Most proofs for the deep embedding, except the proof of hoare-ex, are
simple inductions over proof trees. Rules are proved correct mainly by
definitions for the big-step based embedding. These proofs are relatively
trivial.

• Most proofs in the weakest precondition based embedding involves
defining a simulation relation between pairs of expressions and program
states. The if-seq and loop-nocontinue proof in the continuation
based embedding uses the same idea. The principle behind these proofs
are not difficult but do requires significantly more work than those for
deep embedding and big-step based embedding. Thus we would say they
are of medium difficulty.

• Proofs for seq-inv and nocontinue in the continuation based embed-
ding not only require this simulation technique, but also demand complex
constructions of continuations. These proofs are very complicated.

• hoare-ex’s proofs under shallow embeddings are trivial but are relatively
complicated under the deep embedding.

In following sections, we will demonstrate our proofs under different embed-
dings using our WhileCF toy language. These proofs are one of the major
contributions of the paper and are formalized in Coq [10].

To review, we paste extended rules we are going to prove in figure 9.

Springer Nature 2021 LATEX template

34 Deep Embedding v.s Shallow Embedding

Extended Rules — Transformation Rules

if-seq
⊢ {P}if e then c1 ;; c3 else c2 ;; c3{Q, [R⃗]}
⊢ {P}(if e then c1 else c2) ;; c3{Q, [R⃗]}

loop-nocontinue

c1, c2 contain no continue ⊢ {P}for(;; skip) c1 ;; c2{Q, [R⃗]}
⊢ {P}for(;; c2) c1{Q, [R⃗]}

Extended Rules — Structural Rules

hoare-ex

forall x. ⊢ {P (x)}c{Q, [R⃗]}
⊢ {∃x. P (x)}c{Q, [R⃗]} nocontinue

c contains no continue

⊢ {P}c{Q, [Rbrk, Rcon]}
⊢ {P}c{Q, [Rbrk, R

′
con]}

Extended Rules — Inversion Rules

seq-inv
⊢ {P}c1 ;; c2{Q, [R⃗]}

exists Q′. ⊢ {P}c1{Q′, [R⃗]} and ⊢ {Q′}c2{Q, [R⃗]}
Fig. 9 Representative extended proof rules to be proved

5.1 Deep Embedding

The Choice of the Deep Embedding.

Before proving extended rules in some deeply embedded language, we should
first fix the deep embedding we want to discuss. Theoretically, difference
choices of the primary rule set determine different deep embeddings of program
logic. We find that, if we only pick compositional rules, singleton command
rules and the consequence rule, we can prove all inversion rules quite easily
by proof-tree induction, and on the top of that, we can then establish most
transformation rules and structural rules in a straightforward way. We choose
the deep embedding with rules in figure 2 as primary rules. We first stick to
this specific deep embedding in this subsection to demonstrate extended rules’
proofs and discuss other possible choices afterwards in section 7.

Proving Inversion Rules.

The proofs of inversion rules in the deep embedding are mainly by induction
over the original proof trees. We prove seq-inv and loop-inv in theorem 3
and theorem 4 for demonstration. Other inversion rules like if-inv have similar
proofs.

Theorem 3 For any P , c1, c2, Q and R⃗, if ⊢ {P}c1 ;; c2{Q, [R⃗]}, then there exists
another assertion S such that ⊢ {P}c1{S, [R⃗]} and ⊢ {S}c2{Q, [R⃗]}.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 35

Proof We prove it by induction over the proof tree of shape ⊢ {·}c1 ; ; c2{·, [·]}. In
fact, the last step of proving {P}c1 ; ; c2{Q, [R⃗]} is either hoare-seq or hoare-
consequence. For the former situation, the conclusion obviously holds. For the
latter situation, we can find P ′, Q′ and R⃗′ such that

⊢ {P ′}c1 ;; c2{Q′, [R⃗′]}, P ⊢ P ′, Q′ ⊢ Q,R′
brk ⊢ Rbrk, and R′

con ⊢ Rcon.

By induction hypothesis, we can find S such that ⊢ {P ′}c1{S, [R⃗′]} and ⊢
{Q}c2{Q′, [R⃗′]}. Then, we get ⊢ {P}c1{S, [R⃗]} and ⊢ {S}c2{Q, [R⃗]} by hoare-
consequence. □

Theorem 4 For any P, c1, c2, Q and R⃗, if ⊢ {P}for(;; c2) c1{Q, [Rbrk, Rcon]}, then
there exists two assertions I1, I2 such that

⊢ {I1}c1{I2, [Q, I2]} and ⊢ {I2}c2{I1, [Q,⊥]}, and P ⊢ I1.

Proof We prove it by induction over the proof tree of shape ⊢ {·}for(; ; c2) c1{·}.
Similar to the previous proof, the last step in the proof tree is either hoare-loop
or hoare-consequence. For the first case, the conclusion trivially holds. For the
second case, we can find P ′, Q′ and R⃗′ such that

⊢ {P ′}for(;; c2) c1{Q′, [R⃗′]}, P ⊢ P ′, Q′ ⊢ Q,R′
brk ⊢ Rbrk, and R′

con ⊢ Rcon.

By induction hypothesis, we can find I1, I2 such that ⊢ {I1}c1{I2, [Q′, I2]} and
⊢ {I2}c2{I1, [Q′,⊥]} and P ′ ⊢ I1. This also implies P ⊢ I1 and by hoare-
consequence we have I1, I2 such that ⊢ {I1}c1{I2, [Q, I2]} and ⊢ {I2}c2{I1, [Q,⊥]}.

□

Proving hoare-ex rule.

hoare-ex (theorem 7) is hard to prove in a deeply embedded logic since the

proof tree of ⊢ {P (x)}c{Q, [R⃗]} may be different for a different x. We prove
it by induction on c’s syntax tree instead. Here, we only show one induction
step in the proof—the case for sequential composition. Other induction steps
are proved similarly. A complete proof can be found in our Coq development.

This proof is based on one important assumption about the assertion lan-
guage: we can quantify over assertions inside an assertion and inject from the
meta-logic’s propositions into the assertion language, and moreover:

Hypothesis 5 For any assertion P,Q, R⃗ and program c, if ⊢ {P}c{Q, [R⃗]} holds,

then we have P ⊢ ∃P0.
(
⊢ {P0}c{Q, [R⃗]}

)
∧ P0.

This hypothesis above is an entailment in the assertion logic and the right
hand side is an assertion. In this assertion, P0 is an existentially quanti-

fied assertion inside another assertion, and
(
⊢ {P0}c{Q, [R⃗]}

)
is a meta-logic

proposition, stating that a triple is provable, used as a conjunct in a compound
assertion. This hypothesis is obviously true since the existentially quantified
P0 on the right hand side can be instantiated by P .

Springer Nature 2021 LATEX template

36 Deep Embedding v.s Shallow Embedding

Remark.

This kind of assertions, where universe quantifiers and existential quantifiers
can quantify over assertions and Hoare triples can be admitted as assertions,
are known as impredicative assertions or impredicative polymorphism [15].
Our proof here assumes impredicative assertions are available in the assertion
language, which is indeed true as we discuss the impredicative assertions later
in section 8.5

Back to our proof, hypothesis 5 and seq-inv immediately validates
lemma 6, which is used in the proof of hoare-ex (theorem 7).

Lemma 6 For any P , c1, c2, R and S⃗, if ⊢ {P}c1 ;; c2{R, [S⃗]}, then

⊢ {P} c1
{
∃Q.

(
⊢ {Q}c2{R, [S⃗]}

)
∧Q, [S⃗]

}
.

Theorem 7 For any T, P, c,Q and R⃗, if for any x of type T , we have ⊢
{P (x)}c{Q, [R⃗]}, then ⊢ {∃x. P (x)}c{Q, [R⃗]}.

Proof By induction on c’s syntax tree, the induction step for the sequential
composition is to prove ⊢ {∃x. P (x)}c1 ;; c2{R, [S⃗]} under the following assumptions:

(IH1) For any type T and P , Q, R,

if ⊢ {P (x)}c1{Q, [R⃗]} holds for any x : T , then ⊢ {∃x. P (x)}c1{Q, [R⃗]}.
(IH2) For any type T and P , Q, R,

if ⊢ {P (x)}c2{Q, [R⃗]} holds for any x : T , then ⊢ {∃x. P (x)}c2{Q, [R⃗]}.
(Assu) ⊢ {P (x)}c1 ;; c2{R, [S⃗]} holds for any x : T .

First, by (Assu) and lemma 6, ⊢ {P (x)} c1
{
∃Q.

(
⊢ {Q}c2{R, [S⃗]}

)
∧Q, [S⃗]

}
holds for any x of type T . Then, using (IH1), we can get:

⊢ {∃x. P (x)} c1
{
∃Q.

(
⊢ {Q}c2{R, [S⃗]}

)
∧Q, [S⃗]

}
.

Now, if we can prove ⊢ {∃Q.
(
⊢ {Q}c2{R, [S⃗]}

)
∧Q}c2{R, [S⃗]}, then our conclusion

will immediately follow according to hoare-seq. In fact, it is straightforward. By
(IH2), we only need to prove that for any assertion Q,

⊢ {
(
⊢ {Q}c2{R, [S⃗]}

)
∧Q}c2{R, [S⃗]}.

Suppose T0 is the set of proofs of ⊢ {Q}c2{R, [S⃗]}, then(
⊢ {Q}c2{R, [S⃗]}

)
∧Q ⊣⊢ ∃x : T0. Q

Thus, by hoare-consequence, we only need to prove ⊢ {∃x : T0. Q}c2{R, [S⃗]}.
By (IH2) again, we only need to prove: if ⊢ {Q}c2{R, [S⃗]} has a proof, then ⊢
{Q}c2{R, [S⃗]}; this is tautology. Now we complete the induction step for sequential
composition. □

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 37

Above proof of the sequential composition branch in proving theorem 7 is
based on seq-inv through lemma 6. In fact, the induction over the program c’s
syntax tree has to consider all possible constructors of a command. Therefore,
it is necessary to develop inversion rules and inversion lemmas like lemma 6 for
each constructor. Moreover, only careful design of primary rules for the deeply
embedded Hoare logic can establish these inversion rules: for each program
constructor, there exists exactly one primary rule corresponds to it.
Otherwise, the indeterminacy of the Hoare triple’s proof tree will obstruct the
proof of inversion rules13.

Proving Other Rules.

The proof of other extended rules in the deep embedding follows a common
pattern. They first extract information from Hoare triples in premises using
inversion rules, and then use primary rules to combine them to establish new
triples. This is exactly the proof scheme presented in figure 4 in section 2.3
when we proves nocontinue using inversion rules. The proof for other rules
are similar to this one and is omitted here.

This proof technique using inversion rules can also be applied to shallowly
embedded logics, if these inversion rules are true. However, we would like
to explore proofs without assuming the correctness of inversion rules in the
following sections. Even though they are true for our toy language and shallow
embeddings for their logics, they may not be true in reality when some other
features are added to the logic. In these cases, a proof to circumvent inversion
rules would be helpful.

5.2 Big-step based Shallow Embedding

Proving Transformation Rules.

There is a general proof scheme for transformation rules under shallow embed-
dings.We can first prove some notion of “semantic similarity” of two programs
in the goal and premise, then lift this “semantic similarity” to the logic level
and derive a relation between Hoare triples, i.e., the extended rule. For exam-
ple, the “semantic similarity” in the big-step based embedding is exactly the
refinement of the big-step reduction.

Definition 1 We say program c1 refines c2 (c1 ⊑ c2) in big-step semantics iff.

• for any s1, s2, ek, if (c1, s1) ⇓ (ek, s2), then (c2, s1) ⇓ (ek, s2);

• and for any s, if (c1, s) ⇑, then (c2, s) ⇑.

Lemma 8 lifts the bit-step refinement to the implication between Hoare
triples using the big-step embedding.

13Taking Iris for example, sequential composition is defined by lambda function application. As
a result, we cannot have both hoare-seq and hoare-app for function application when developing
its deeply embedded version in section 9.2. Otherwise, it is impossible to have app-inv with both
primary rule presented, because a Hoare triple about function application may be derived by
hoare-seq whose premises cannot derive those of hoare-app and its inversion will fail.

Springer Nature 2021 LATEX template

38 Deep Embedding v.s Shallow Embedding

Lemma 8 For any c1, c2, if c2 ⊑ c1, then for any P,Q, R⃗, ⊨b {P}c1{Q, [R⃗]} implies
⊨b {P}c2{Q, [R⃗]}.

Proof The proof of the theorem is straightforward. Assume the pre-state is s1, which
satisfies P .

• We use contradiction to prove c2 has no error. If it can cause error, (c2, s1) ⇑,
then according to c2 ⊑ c1, we can also construct an error in c1’s execution,
(c1, s1) ⇑, which contradicts with ⊨b {P}c1{Q, [R⃗]}.

• For any ending configuration (ek, s2) which c2 can reach, we construct (c1, s1) ⇓
(ek, s2) from (c2, s1) ⇓ (ek, s2) according to c2 ⊑ c1. By ⊨b {P}c1{Q, [R⃗]}, we
can show (ek, s2) satisfies the post-condition and thus prove ⊨b {P}c2{Q, [R⃗]}

□

With lemma 8, proofs for transformation rules if-seq and loop-
nocontinue become apparent with the following two refinements.

(if e then c1 else c2) ;; c3 ⊑ if e then c1 ;; c3 else c2 ;; c3

for(;; c2) c1 ⊑ for(;; skip) c1 ;; c2

They are also easy to prove. For example, we can destruct the big-step
reduction

((if e then c1 else c2) ;; c3, s1) ⇓ (ϵ, s2)

into the following proposition, which essentially encodes the reduction seg-
ments of two execution paths.

(eval(e, s1) = true ∧ (c1, s1) ⇓ (ϵ, s3) ∧ (c3, s3) ⇓ (ϵ, s2))

∨(eval(e, s1) = false ∧ (c2, s1) ⇓ (ϵ, s3) ∧ (c3, s3) ⇓ (ϵ, s2))

We can easily reconstruct a reduction of if e then c1 ; ; c3 else c2 ; ; c3
from s1 to (ϵ, s2) using this proposition. Other branches of if-seq’s refinement
proof are similar, which can be easily enumerated by discussing four different
reductions (three different exit control flow and one error case) of the program.

The proof for the loop-nocontinue is similar but involves induction over the
loop iteration. The reduction of each iteration of for(;; c2) c1 will be destructed
into two reduction segments of c1 and c2, which can be easily combined into
a reduction of c1 ; ; c2 since both contains no continue. And the reduction
of c1 ;; c2 is exactly one iteration of for(;; skip) c1 ;; c2, and combined with
induction hypothesis, it reproduces the reduction of for(;; skip) c1 ;; c2 and
proves the refinement.

This is also the approach taken in Software Foundations Vol. 6 [12] to
prove a similar transformation rule in the big-step based embedding. We will
see later in following sections that this approach can also be applied to the
weakest precondition based embedding and the continuation based embedding
but can have quite different definitions of “semantic similarity”.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 39

Proving Structural Rules.

We then show the proof for hoare-ex here and prove other rules in
appendix B. The conclusion for hoare-ex holds for another two shallow
embeddings with similar proofs, which we omit in following sections.

Theorem 9 For all c, P , andQ, if for all x, ⊨b {P (x)}c{Q}, then ⊨b {∃x. P (x)}c{Q}.

Proof For σ ⊨ ∃x. P (x), we know there exists some x such that σ ⊨ P (x). By the
definition of ⊨b, we can instantiate the premise with initial state σ and the conclusion
immediately follows by definition. □

Proving Inversion Rules.

Inversion rules’ proofs of the big-step based embedding is similar to those of
the deep embedding. The big-step semantics is defined inductively w.r.t. the
structure of a program, and we can reorganize the big-step relation underlying
the triple just like what we do for the deeply embedded logic. As a result, we
can easily prove inversion rules. We only demonstrate the proof for seq-inv
here.

Theorem 10 For all c1, c2, P,Q, and R, if ⊨b {P}c1 ;; c2{Q, [R⃗]}, then there exists
Q′ such that (1) ⊨b {P}c1{Q′, [R⃗]} and (2) ⊨b {Q′}c2{Q, [R⃗]}.

Proof We use the weakest pre-condition of c2 as Q′: σ ⊨ Q′ iff. it never cause error,
i.e., not (c2, σ) ⇑, and ∀σ1.(c2, σ) ⇓ (ϵ, σ1) implies σ1 ⊨ Q.

(1) The safety of c1 is guaranteed by the safety of c1 ;; c2 and we only need to
show the state after c1 terminates satisfies post-conditions. If c1 exits normally, we
combine the premise in the weakest pre. and have (c1 ;; c2, σ) ⇓ (ϵ, σ1). By premise,
we have σ1 ⊨ Q and the intermediate state satisfies Q′ the conclusion holds by the
definition of strongest post. If c1 exits by control flow, say (c1, σ) ⇓ (ek, σ′), we have
(c1 ;; c2, σ) ⇓ (ek, σ′) and by premise, we prove the conclusion.

(2) The conclusion is obvious by the definition of weakest precondition Q′. □

5.3 Weakest precondition based Shallow Embedding

Proving Transformation Rules: Refinement.

The principle for proving transformation rules in section 5.2 still applies to
small-step based embeddings (both weakest precondition based embedding and
continuation based embedding). But we need to find an appropriate definition
of “semantic similarity”. A first attempt is to use the refinement again, but
under the small-step semantics.

Definition 2 We say program c1 refines c2 (denoted c1 ⊑s c2) in small-step seman-
tics iff. for any initial states σ1 and terminal configuration (c, κ, σ), the following is

Springer Nature 2021 LATEX template

40 Deep Embedding v.s Shallow Embedding

true.
((c1, ϵ, σ1) → (c, κ, σ)) ⇒ ((c2, ϵ, σ1) → (c, κ, σ))

And we also have lemma 11 to lift the semantic refinement to the implica-
tion between weakest preconditions, which immediately implies the implication
between Hoare triples.

Lemma 11 For any c1, c2, if c2 ⊑s c1, then for any σ, P,Q, R⃗, σ ⊨ WP(c1, ϵ){Q, [R⃗]}
implies σ ⊨ WP(c2, ϵ){Q, [R⃗]}.

The proof for lemma 11 is a simple and straightforward co-induction over
σ ⊨ WP(c2, ϵ){Q, [R⃗]}.

To use the lemma, we need to again prove the following two refinements.

(if e then c1 else c2) ;; c3 ⊑s if e then c1 ;; c3 else c2 ;; c3

for(;; c2) c1 ⊑s for(;; skip) c1 ;; c2

A possible proof idea is similar to the one in section 5.2. We need to destruct
the reduction of the left-hand-side program into several reduction segments
along all execution paths. However, the notion of “reduction segments” is
not for free in the small-step semantics as it is in the big-step semantics.
For example, a direct inversion of the following reduction does not yield the
reduction segments of c1, c2, and c3.

((if e then c1 else c2) ;; c3, ϵ, σ1)→∗ (c, κ, σ)

We need to manually prove that the sequential composition can be split into
two reductions and the if-statement can be split into two reductions of two
branches, i.e., there exists an ending configuration14 (c′, κ′, σ′), such that(

((e, σ1)→∗ (true, σ1) ∧ (c1, , σ1)→∗ (c′, κ′, σ′))

∨ ((e, σ1)→∗ (false, σ1) ∧ (c2, , σ1)→∗ (c′, κ′, σ′))
)

∧(κ′ = ϵ⇒ (c′, κ′ ·KSeq(c3), σ
′)→∗ (c, κ, σ))

.

The proof needs to be split into two separate lemmas for the sequential com-
position and the if-statement. Both are proved by induction over the reduction
length. We can then reorganize these reduction segments to form a reduction
of if e then c1 ;; c3 else c2 ;; c3.

While it is still a reasonable proof for the if-seq, the proof for the loop is
chaotic. In section 5.2, we can directly induct over the number of loop iteration,

14While the ending configuration of the big-step semantics can only be (ek, s) for any s, in
the small-step semantics, it can be (skip, ϵ, s), (break, ϵ, s), (continue, ϵ, s), or any (c, ϵ, s) that
cannot be reduced any more due to some error, e.g., (continue,KLoop2(c1, c2), s) since it has no
reduction defined.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 41

since it is how the big-step semantic for loops is defined, we cannot do the
same thing for loops in small-step semantics. A direct induction can only be
performed to induct over the small-step reduction length! We need to have
another inductive definition for reduction segments of a loop, which we present
informally in definition 3.

Definition 3 For any ending configuration (c, κ, s), the reduction from
(for(;; c2) c1, ϵ, s1) to (c, κ, s) can be decomposed into an n−iteration segment iff.

• n = 0, then (c, κ, s) is reached by some break from (c1 ;; c2, ϵ, s1), or it is some
stuck configuration reachable from (c1 ; ; c2, ϵ, s1), or c2 eventually reduces to
continue and (c, κ, s) = (continue,KLoop2(c1, c2), s) gets stuck.

• n = n′ + 1, then (c1 ; ; c2, ϵ, s1) →∗ (skip, ϵ, s′), and (for(; ; c2) c1, ϵ, s
′) →∗

(c, κ, s) can be decomposed into an n′−iteration segment.

Lots of details of handling control flows have been neglected in this def-
inition. To prove such decomposition is possible, we use induction over the
reduction length, and it involves many auxiliary definition, which we prefer
not to demonstrate here. Instead, we present another more organized proof
technique: simulation.

Proving Structural Rules: Simulation.

The idea is to directly induct over the length of reductions for the left-hand-
side program in a refinement, and for each head reduction, we find zero or
finitely many head reductions of the right-hand-side program that corresponds
to it. This is exactly the idea of simulation, and we use the simulation relation
(definition 4) to record this kind of correspondence, which is used for both the
weakest precondition based embedding and the continuation based embedding.

Definition 4 (Simulation) A relation ∼ between two programs is a simulation rela-
tion iff. for any c1, κ1, c2, κ2, if the source program (c1, κ1) can be simulated by the
target program (c2, κ2), i.e. (c1, κ1) ∼ (c2, κ2), then

• Termination: if (c1, κ1) has safely terminated, i.e., κ1 is empty ϵ and c1 is
skip, break, or continue, then (c2, κ2) can reduce to (c1, κ1) in zero or finite
steps without modifying the program state, (or it can stuck in an infinite loop
without modifying the state)15;

• Preservation: if for some program state σ, (c1, κ1, σ) reduces to (c′1, κ
′
1, σ

′),
then there exists (c′2, κ

′
2) simulates (c′1, κ

′
1) by (c′1, κ

′
1) ∼ (c′2, κ

′
2), and (c2, κ2)

can reduce to (c′2, κ
′
2) in zero or finite steps with same state modifications, i.e.,

(c2, κ2, σ) →∗
c (c′2, κ

′
2, σ

′); 16

15We add the disjunction in parentheses to aid the proof for rules only under the continuation
based embedding, and we remove it from the definition in this section.

16Notice that stuttering might occur when (c2, κ2) always takes zero step, and (c1, κ1) may not
terminate in this case. This is a common problem people want to avoid when proving simulations
in compiler verifications. However, we are considering partial correctness in this paper and only
want certain properties will hold when the program terminates. Stuttering is not a problem here.

Springer Nature 2021 LATEX template

42 Deep Embedding v.s Shallow Embedding

• Error: if for some state σ, (c1, κ1, σ) does not belong to either of the above
cases, i.e., it is stuck by an error, then (c2, κ2, σ) will also reduce into some
error in zero or finite steps.

Intuitively, in the termination case, when the source terminates, the target
that simulates the source will also terminate in a few steps and these steps
have no virtual effect on the program state. In the preservation case, any
reduction step of the source can be simulated by zero or finite steps of the
target, which mimic source’s modifications to the program state, and program
pairs they reduce to preserve the simulation relation. In the error case, when
the source causes an error, the target will also raise an error along certain
execution trace.

One may expect that the simulation directly implies the refinement, but the
simulation definition here is more general than the refinement because it does
not require two programs reduce to the same error. However, we can directly
use the simulation as the notion of “semantic similarity” for embeddings using
small-step semantics. And we can use a simulation lemma (lemma 12 and
lemma 16) to lift simulations to the logic level. The simulation lemma here
(lemma 12) lifts the simulation between two programs to the implication
between their weakest preconditions.

Lemma 12 (Weakest Pre. Simulation) If there is a simulation relation∼ and (c1, κ1)
simulates (c2, κ2), i.e., (c2, κ2) ∼ (c1, κ1), then for all σ, c1, c2, κ1, κ2, Q, and R⃗,
σ ⊨ WP (c1, κ1){Q, [R⃗]} implies σ ⊨ WP (c2, κ2){Q, [R⃗]}.

Proof We prove the lemma by induction over the reduction of (c2, κ2, σ).

• If (c2, κ2) has terminated, the simulation implies (c1, κ1) will terminate with
the same exit kind and we prove the conclusion by reflexivity.

• If (c2, κ2) has error, the simulation implies (c1, κ1) will also have an error, which
contradicts with the safety guarantee (the program never cause error) in its
weakest precondition.

• If (c2, κ2) further reduces, the simulation relation guide us how to reduce (c1, κ1)
while preserving the simulation. We then unfold the weakest pre.’s definition
and forward the execution accordingly and prove the lemma by the induction
hypothesis.

□

To prove if-seq and loop-nocontinue, we only need to construct two
simulations ∼1 and ∼2 with following properties respectively.

((if e then c1 else c2) ;; c3, ϵ) ∼1 (if e then c1 ;; c3 else c2 ;; c3, ϵ)
(for(;; c2) c1, ϵ) ∼2 (for(;; skip) c1 ;; c2, ϵ)

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 43

For example, we can define the simulation for loop-nocontinue as the small-
est relation with following properties for any c1, c2 containing no continue.

(∀c, κ.(c, κ) ∼2 (c, κ))∧

∀κ.

(for(;; c2) c1, κ) ∼2 (for(;; skip) c1 ;; c2, κ)

∧
(
(c1 ;; continue,KLoop1(c1, c2) · κ) ∼2 (c1, c2 · continue · KLoop1(c1 ;; c2, skip) · κ)

)
∧

∀c0, κ0.(c0, κ0) has no continue ⇒
(c0, κ0 · continue · KLoop1(c1, c2) · κ) ∼2

(c0, κ0 · c2 · continue · KLoop1(c1 ;; c2, skip) · κ)

∧ ((continue,KLoop1(c1, c2) · κ) ∼2 (c2, continue · KLoop1(c1 ;; c2, skip) · κ))

∧
(
∀c0, κ0.(c0, κ0) has no continue ⇒
(c0, κ0 · KLoop2(c1, c2) · κ) ∼2 (c0, κ0 · continue · KLoop1(c1 ;; c2, skip) · κ)

)
∧ ((skip,KLoop2(c1, c2) · κ) ∼2 (skip,KLoop2(c1 ;; c2, skip) · κ))
∧ ((break,KLoop2(c1, c2) · κ) ∼2 (break,KLoop2(c1 ;; c2, skip) · κ))

This seemingly daunting definition is simply a conjunction of all possible
intermediate configurations of two programs that need to be related together.
It is also easy to prove this relation ∼2 is a simulation. We simply prove that
in each conjunction branch, after one small-step reduction of the left-hand-side
program, we can make zero or finite steps in the right-hand-side program and
arrive at another conjunction branch in this relation. For example, in the first
branch,

(for(;; c2) c1, κ) ∼2 (for(;; skip) c1 ;; c2, κ)

after one step of (for(;; c2) c1, κ), we take three steps of (for(;; skip) c1 ;; c2, κ)
and arrive at the second branch

(c1 ;; continue,KLoop1(c1, c2)·κ) ∼2 (c1, c2·continue·KLoop1(c1 ;; c2, skip)·κ).

This is just a simple proof that can be automated thourgh small-step sym-
bolic execution, while the complicated induction proofs are all hidden in
the simulation lemma. And by directly application of lemma 12, we prove
loop-nocontinue.

In fact, the construction of these simulation relations ∼2 can guide the
proof using pure refinement. All conjunction branches will corresponds to some
intermediate proofs using definition 3. Strictly speaking, there is no obvious
advantages using either approach, but we believe the simulation approach
is more suitable for proving small-step properties by thinking in small-step
semantics. And it helps proofs of other extended rules as we will see soon.

Proving Structural Rules.

We prove nocontinue by showing the correctness of lemma 13.

Lemma 13 For all σ, c, κ,Q,Rbrk, Rcon, and R′
con, if σ ⊨ WP (c, κ){Q, [Rbrk, Rcon]}

and c and κ contains no continue, then σ ⊨ WP (c, κ){Q, [Rbrk, R
′
con]}.

Proof We first prove in lemma 14 that command reduction preserves the no-continue
property, which is obvious by discussing all constructors of the small-step semantics.

Springer Nature 2021 LATEX template

44 Deep Embedding v.s Shallow Embedding

WP (c1;; c2, ϵ){Q, [R⃗]}

WP (c1, c2 · ϵ){Q, [R⃗]} WP (c1, ϵ){WP (skip, c2 · ϵ){Q, [R⃗]}, [R⃗]}

WP (c1, ϵ){WP (c2, ϵ){Q, [R⃗]}, [R⃗]}

simulation
bind-inv

simulation

Fig. 10 Proof Scheme of seq-inv with Weakest Precondition

Lemma 14 For all c, c′, κ, κ′, σ, and σ′, if c and κ contains no continue and
(c, κ, σ) →c (c′, κ′, σ′), then c and κ contains no continue.

We then induct over the number of steps (c, κ) takes to terminate.

• For the base case where (c, κ) is a terminal, the conclusion is obvious.

• For the case where (c, κ, σ) can step into (c′, κ′, σ′), we forward the execution
of (c, κ, σ) in both weakest preconditions and only need to prove

σ′ ⊨ WP (c′, κ′){Q, [Rbrk, Rcon]} implies σ′ ⊨ WP (c′, κ′){Q, [Rbrk, R
′
con]}

which follows from the induction hypothesis and lemma 14.
□

Proving Inversion Rules

We prove seq-inv, a representative inversion rule, by lemma 15, where the
simulation lemma helps again.

Lemma 15 For all c1, c2, Q, and R⃗, there exists Q′ such that for all σ, (1) if σ ⊨
WP (c1 ; ; c2, ϵ){Q, [R⃗]} then σ ⊨ WP (c1, ϵ){Q′, [R⃗]}, and (2) if σ ⊨ Q′ then σ ⊨
WP (c2, ϵ){Q, [R⃗]}.

Proof To prove seq-inv, we need to find an intermediate assertion Q′, for which we
use WP (c2, ϵ){Q, [R⃗]}. This immediately gives us (2) and we can prove (1) following
the scheme proposed in figure 10, where bind-inv is the inversion of bind rule. This
is true because we know when c1 exits by break or continue, we will skip c2 · ϵ and
reach post-conditions in R⃗; when c1 exits normally, we will step into c2 · ϵ and the
weakest precondition for it should be satisfied. □

5.4 Continuation based Shallow Embedding

Proving Transformation Rules.

Similar to weakest precondition based embedding, we prefer using the simula-
tion as the “semantic similarity” with the simulation lemma (lemma 16) that
lifts a simulation relation to relations between guard predicates.

Here, we use another definition of the simulation relation. We add the dis-
junction in parentheses in definition 4, which asserts that when the source
terminates, the target will no longer change the program state and will either
terminates in zero or finite steps, or stuck in an infinite loop. Because under
the continuation based embedding, we only require the simulation lemma to

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 45

provide the derivation between the safety of two programs, i.e., they can pro-
ceed without error. The simulation do not need to simulate their terminations,
which they may never reach. This is an important property which we use in
proofs.

Lemma 16 (Guard Simulation) For all c1, c2, κ1, κ2, and P , if {P}(c1, κ1) and we
have the simulation (c2, κ2) ∼ (c1, κ1), then {P}(c2, κ2).

Proof The proof is similar to the one for lemma 12 by induction over the reduction
of (c2, κ2). The only difference is the termination case, where we no longer require
any information from (c1, κ1) since the conclusion holds by definition. □

With lemma 16, we can easily prove if-seq and loop-nocontinue. The
proof idea is similar to the one in section 5.3 and we omit it here.

Proving Structural Rules

Lemma 17 is the key step for proving nocontinue in continuation based
embedding, where complex constructions of continuations are involved.

Lemma 17 For all c, κ0, P,Q,Rbrk, and Rcon, we have {Q}(skip, κ0) and
{Rbrk}(break, κ0) imply {P}(c, κ0), if (1) c has no continue; and (2) for all κ,
{Q}(skip, κ) and {Rbrk}(break, κ) and {Rcon}(continue, κ) imply {P}(c, κ).

Proof Here, we set R′
con in nocontinue to ⊥, which can derives any other R′

con by
hoare-consequence rule. As a result, we only know the execution of κ0 is guarded
by Q and Rbrk but not Rcon. However, we can construct a new κ from κ0 such
that the behaviors of two continuations are “similar” when entering by normal exit
and break exit, but κ “terminates” immediately when entering by continue exit to
guarantee {Rcon}(continue, κ). Also, since c has no continue, we know the behaviors
of (c, κ0) and (c, κ) are “similar” so that they can simulate.

For such construction to be viable, we first need lemma 18 to enable conversion
from continuations to commands, whose proof is trivial and omitted.

Lemma 18 For any continuation κ, we can construct a command cκ, such that
(skip, κ) ∼ (cκ, ϵ), by chaining expressions corresponds to each level in κ using
sequencing commands and virtual loops17.

We then show the existence of such construction from κ0 to κ.
We define program dead ≜ for(;; skip) skip. It will always cause c ;; dead stuck

in an infinite loop after the execution of c and it is always safe to execute dead from
any program state.

17Virtual loops takes the form of c3 :: fori(; ; c2)c1, where c3 is the command remain-
ing in the previous iteration and i = 1, 2. Its semantics is defined by the reduction (c3 ::
fori(; ; c2)c1, κ, σ) →c (c3,KLoopi(c1, c2) ·κ, σ). Assume cκ is constructed from κ, we transform
κ · KLoopi(c1, c2) into cκ :: fori(; ; c2)c1.

Springer Nature 2021 LATEX template

46 Deep Embedding v.s Shallow Embedding

We assume κ0 takes the form of

KA︸︷︷︸ · KLoopi(c1, c2)︸ ︷︷ ︸ · KC︸︷︷︸
A B C

where B is the first (innermost) loop continuation in κ0. The case where κ0 contains
no loop, i.e., B and C is empty ϵ , is trivial and is not discussed here. The normal entry
into it executes all ABC; the break entry into it executes C only; the continue entry
into it executes BC. We use cAB to denote command transformed from continuation
AB by lemma 18. Now, we construct18

κ ≜ cAB · break︸ ︷︷ ︸ · KLoop1(skip, dead)︸ ︷︷ ︸ · KC︸︷︷︸
A′ B′ C′

The normal entry will execute cAB and then skip the loop in B′ to execute KC ,
i.e., it will execute all continuations ABC in κ0; the break entry will skip A′ 19 and
is scoped by the loop in B′ and enter KC through normal entry, which is equiva-
lent to first skipping loop in B then executing KC ; the continue entry will skip A′

and stuck in a dead loop in B′. As a result, {Q}(skip, κ0) will imply {Q}(skip, κ),
{Qbrk}(break, κ0) will imply {Qbrk}(continue, κ), and {Qcon}(continue, κ) uncon-
ditionally holds because a dead loop always make progress.

By premise, we have {P}(c, κ). Notice that (c, κ) simulates (c, κ0) because κ
simulates κ0 when c exit normally or by break, but c can only exit in these ways
instead of continue exit. By lemma 16, we prove {P}(c, κ0). □

Proving Inversion Rules

Similar to the proof of nocontinue, the proof of seq-inv (lemma 19) is also
based on constructions of continuations.

Lemma 19 For all c1, c2 and P , if for all κ, {Q}(skip, κ) and {Rbrk}(break, κ) and
{Rcon}(continue, κ) imply {P}(c1 ;; c2, κ), then there exists Q′ such that for all κ0,

(1) {Q′}(skip, κ0) and {Rbrk}(break, κ0) and {Rcon}(continue, κ0) imply
{P}(c1, κ0),

(2) {Q}(skip, κ0) and {Rbrk}(break, κ0) and {Rcon}(continue, κ0) imply
{P}(c2, κ0).

Proof We construct Q′ as the strongest post. of c1: σ ⊨ Q′ iff. ∃σ0. (c1, ϵ, σ0) →c

(skip, ϵ, σ) and σo ⊨ P .
(1) Similar to the proof of nocontinue, we need to construct a κ from κ0

to utilize the premise by satisfying {Q}(skip, κ). We take κ ≜ dead · κ0. κ sim-
ulates κ0 through break and continue entry and we have {Rbrk}(break, κ) and
{Rcon}(continue, κ) by lemma 16. κ always loops through the normal entry and
we have {Q}(skip, κ). By premise, we have {P}(c1 ;; c2, κ). This guarantees c1 can
execute safely from P , and we only need to show that κ0 can execute safely after c1.

18We abbreviate KSeq(c) · κ as c · κ.
19Although there is a loop in cAB , it is hidden in a sequential continuation and the break

will ignore the loop in cAB . Such ill-formed continuation with loop commands in a sequential
continuation is only possible in fabricated ones and will not occur in normal small-step reductions.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 47

When c1 exits through break and continue, (c1 ; ; c2) · κ simulates c1 · κ0 and
we have {P}(c1, κ0); {Q′}(skip, κ0) tells us when c1 exits normally, we can keep
executing κ0 safely. Together, we have {P}(c1, κ0) in all cases.

(2) By specializing the premise with κ0, we can reduce the proof goal to
{P}(c1 ;; c2, κ0) implies {Q′}(c2, κ0). This is obvious because {P}(c1 ;; c2, κ0) shows
the safety c2 · κ0 after we exit c1 normally, and Q′, program states after c1’s normal
exit, which apparently guards c2 · κ0. □

Summary.

In summary, we have proved representatives (figure 9) of extended rules in
three categories under four different embeddings.

• The deep embedding allows most of the proofs to be simple, but it has a
relative complicated proof for the hoare-ex rule.

• The big-step based embedding has relatively simple proofs for all extended
rules. And there is a general proof principle for transformation rules under
all shallow embeddings: first prove a relationship between two programs’
semantics, then lift it to a relationship between two programs’ Hoare
triple.

• In the weakest precondition based embedding, proofs are of medium dif-
ficulty. We can apply the general proof principle for it but we prefer
using the simulation relation as the relationship at the semantic level for
embeddings based on small-step semantics. The simulation relation is rel-
atively easy to construct and is used throughout all extended rule’s proof
in this embedding, but it could be tedious to define when the program is
complicated.

• In the continuation based embedding, complexities for transformation
rules’ proofs are still acceptable with the general proof principle, but is
very difficult for other extended rules. We need complex constructions for
new continuations to utilize information in the premise.

We prefer the deep embedding because it manages proofs mainly at the logic
level, instead of the semantic level. We do not need to worry about simulations
and defining continuations in this embedding. The only problem is the hoare-
ex rule, which we have proved in this section and the proof can be maintained
when extending the language and logic, as long as there exists exactly one
primary rule corresponds to it for each program constructor as mentioned in
section 5.1.

6 From Shallow Embedding to Deep
Embedding

In section 5, we have seen proofs for extended proof rules under different
program logic embeddings. The proofs under shallow embeddings (except the
big-step based one) is relatively complicated for certain extended rules, e.g.,
if-seq and nocontinue. Proofs under both the weakest precondition based
one and the continuation based one involves the notion of simulation. Proofs

Springer Nature 2021 LATEX template

48 Deep Embedding v.s Shallow Embedding

under the continuation based one even require complex constructions of con-
tinuations. Although it may be possible to formalize these complicated proofs
in real verification tools, we propose an easier way to work around them by
building a deeply embedded logic above the existing shallowly embedded logic
and prove these extended rules under the deeply embedded one.

Def of |=

Primary Rules of |= Extended Rules of |=

Derived Rules of |= Proof Rules of
Shallowly Embedded Logic |=

Soundness (|−⇒|=)

Def of |−
(Primary Rules of |−)

Derived Rules of |− Extended Rules of |−

Proof Rules of
Deeply Embedded Logic |−

User Program’s
Correctness w.r.t. |=

User Program’s
Correctness w.r.t. |−

⃝1

⃝2

⃝3

⃝4

User
Proof

⃝5
⃝6

⃝7

User
Proof

⃝8 Soundness Proof

⃝9

Proof Reuse (c)

Proof
Reuse
(b)

Proof
Reuse
(a)

Fig. 11 The Framework for Building Deep Embedding from Shallow Embedding. Proofs
are represented by arrows labelled with numbers. Proofs of arrows with matching texture
can be reused in place of the other.

Figure 11 presents our framework for builduing a deeply embedded logic
by reusing most of the proofs from an existing shallowly embedded one. The
existing shallow embedding contains the followings:

• The definition of the shallow embedding ⊨ {P}c{Q, R⃗}.
• A set of primary rules and their proofs⃝1 directly based on the definition.
• A set of derived rules and their proofs ⃝2 built on primary rules.
• A set of extended rules and their proofs⃝3 directly based on the definition.
• User’s proof ⃝4 of their programs using only20 rules of these three types.

The deeply embedded verification tool we want needs to provide the followings:
• The definition of the embedding, i.e., the set of primary rules for proving
⊢ {P}c{Q, R⃗}.

• A set of derived rules and a set of extended rules along with their proofs
⃝5 ⃝6 directly built on primary rules.

• User’s proof ⃝7 of their own programs using rules of these three types.
• To guarantee the correctness of the deep embedding, a soundness theorem
and its proof ⃝8 is required.

20The embedding’s definition is not exposed to users as part of its interface. User’s proof only
consists of application of these proof rules and proofs irrelevant to the program logic.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 49

We use same sets of proofs rule in the deep embedding as the shallow one.
The primary rules, derived rules, and extended rules in the shallow embedding
and the deep embedding have same forms. In this way, many proofs in the
shallow embedding side can be reused to assist the construction of the deep
embedding as indicated in figure 11.
Proof reuse (a). Since all proof rules in two embedding have same forms,

users can upgrade their proofs in the shallow embedding ⃝4 to those in
the deep one⃝7 with only one change in proofs. They only need to replace
occurances of proof rules with their counterparts in the deep one. The
new proof establishes the program correctness as deeply embedded Hoare
triples.

Proof reuse (b). As mentioned in section 1, derived rules are directly derived
from primary rules with trivial proofs. Since primary rules in two embed-
dings have same forms, derived rules’ proofs ⃝2 and ⃝5 are in the same
situation as case (a) and we can reuse them.

Proof reuse (c). The most important part in a deeply embedded logic is its
soundness proof ⃝8 , which guarantees the logic’s correctness. However,
we can construct the soundness proof for free by reusing existing pri-
mary rules’ proofs ⃝1 in the shallow embedding. To prove the soundness,
we start by induction over the proof tree and obtain subgoals that are
identical to shallowly embedded primary rules, which are already proved.
Moreover, given the soundness and user program correctness in the

deep embedding, we can also derive program correctness in the shallow
embedding ⃝9 , if it is of user’s desire. It is a trivial instantiation of the
soundness theorem on deeply embedded Hoare triples of user programs,
where both are generated by reusing proofs in the shallow embedding.

However, we do not need to reuse proofs of extended rules. As we have
shown in section 5, their proofs⃝3 in the shallow embedding are often complex
constructions, while in the deep embedding, their proofs ⃝6 are mostly simple
inductions over the proof tree. Proving extended rules are simpler in a deep
embedding than in a shallow embedding. Moreover, to our knowledge, many
shallowly embedded verification tools (e.g. Iris) do not provide extended rules
and their proofs. There is no way to reuse what does not exist, but we can
easily equip them with these extended rules when lifted to deep embeddings.

In conclusion, building a deeply embedded verification tools from an exist-
ing shallowly embedded one is mainly simple reuses of existing proofs and
supports easier proofs of extended rules. Existing user’s proofs can also be
easily upgraded to the deeply embedded version.

7 Choices of Primary Rules in Deep Embedding

At the beginning of section 5.1, we have fixed our deeply embedded logic with
only primary rules in figure 2. In fact, we may choose deep embeddings with
other admitted primary rules. For example, we may choose frame rule as a

Springer Nature 2021 LATEX template

50 Deep Embedding v.s Shallow Embedding

primary rule as discussed in section 8.1.2. In this section, we want to discuss
the choices of making extended rules as primary rules.

Choosing hoare-ex as a Primary Rule.

In section 5, we notice that the proof of hoare-ex is simpler in shallow embed-
dings than its proof in the deep embedding. It seems a good choice to make
it a primary rule and use the technique in section 6 to lift its simple shal-
low embedding proof to the deep embedding’s soundness proof. However, we
still prefer not choosing it as primary proof rule in the deeply embedded logic
and prove it as an extended rule. This is also the design choice in our deeply
embedded VST. Adding hoare-ex as a primary rule causes problems.

Adding more primary rules to the proof system would invalidate the origi-
nal proofs of other extended rules. In deep embedding, we mainly use induction
over proof trees when proving extended rules, and now we need to discuss one
more case in such induction where the Hoare triple is constructed by hoare-
ex. Taking seq-inv as an example, the extra case is that ⊢ {P}c1 ;; c2{Q, [R⃗]}
is constructed by hoare-ex, i.e., P must takes the form of ∃x : T.P ′(x). And
the induction hypothesis is for any x of type T we can find an S such that
⊢ {P ′(x)}c1{S, [R⃗]} and ⊢ {S}c2{Q, [R⃗]}. We then need to use the axiom
of choice (AC) to complete the proof: we need to find a function S′ from

T to assertions, such that for any x of type T , ⊢ {P ′(x)}c1{S′(x), [R⃗]} and

⊢ {S′(x)}c2{Q, [R⃗]}. It is controversial whether we should accept AC when we
prove meta-theorems. Original VST does not need AC. Moreover, to complete
this proof in Coq, we actually need the computational version of AC. To pre-
vent such problems when we want more extended rule, we treat hoare-ex as
an extended rule and prove it as a meta-theorem.

Choosing Transformation Rules as Primary Rules.

Transformation rules can not treated as primary rules either. Otherwise,
some program may have multiple proofs through the original proof rules
and through the transformation rule. This invalidates our previous proof of
inversion rules.

For example, if we admit loop-nocontinue as a primary rule, then in
the proof of loop-inv, we need to consider one more induction case: given
⊢ {P}for(; ; skip) c1 ; ; c2{Q, [R⃗]}, we need to show that there exists I1
and I2 such that ⊢ {I1}c1{I2, [Q, I2]} and ⊢ {I2}c2{I1, [Q,⊥]} and P ⊢ I1.
Different from the case in section 5.2, the induction hypothesis cannot extract
any information from the premise. The loop must take the form of for(;; c2) c1
to apply the induction hypothesis. As a result, we fail to prove loop-inv.

Moreover, admitting transformation rules as primary rules acquires devel-
opers to give their soundness proof in some shallow embedding. As we have
seen in section 5, their proofs under weakest precondition based embedding

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 51

and continuation based embedding is not as simple as other primary rules’
proofs.

Choosing other Structural Rules as Primary Rules.

Both frame rule and hypo-frame rule are preferred not chosen as pri-
mary rules for the same reason as transformation rules. They make proof tree
induction complicated. Moreover, a complex validity definition is required to
support the soundness of the logic with hypo-frame rule as a primary rule.

Choosing Inversion Rules as Primary Rules.

In fact, choosing inversion rules as primary rules is not even an option.
Conclusions of primary rules must take the form of Hoare triples, while those
of inversion rules are often propositions lead by meta-language’s existential
quantifier. We can not define the provable relation for these propositions.

Summary.

It is possible to choose structural rules and transformation rules as primary
rules, but it makes proof tree induction and soundness proof complicated. It
is impossible to formalize inversion rules as primary rules. As a result, our
current choice of primary rules (compositional rules, the consequence rule, and
singleton command rules) is the most suitable one for instantiate a deeply
embedded verification tool.

8 Discussion

In this section, we discus various extensions of the Hoare logic discussed in
previous sections and their potential influence on the logic embedding. Specif-
ically, we will first consider program logics with load and store to discuss
some basics of separation logic embeddings. Then we introduce rules related
to procedure calls above it and further discuss embeddings for the logic with
procedure calls. We will also discuss various features of the program logic and
assertion language like total correctness, non-determinism, and step-indexed
definitions, along with the soundness proof technique mentioned in section 3.3.

8.1 Embeddings of Separation Logic

When reasoning about memory operations, it is useful to extend the Hoare
logic to a separation logic [39]. A separation logic adds a logic connective, “∗”,
separating conjunction, to the assertion language. The assertion P ∗Q asserts
two disjoint memory satisfying P and Q respectively. Typically, a separation
logic adds proof rules for memory related assignments (rules for load and store)
and the frame rule to Hoare logic. Also, when function call is involved in
a programming language, separation logic allows verifiers to prove a Hoare

Springer Nature 2021 LATEX template

52 Deep Embedding v.s Shallow Embedding

triple about global memory while the callee function specification only states
its local effects.

Figure 12 extends our previous toy WhileCF language with two memory
operations.

• Simple load, x = [y], where x and y are program variables, and this
command loads the value from the location with address y into variable x.

• Simple store, [x] = y, where x and y are program variables, and this
command stores the value of y into the location with address y.

While-CF with Memory Operations

c ∈ command := · · · | x = [y] | [x] = y

Separation Logic Proof Rules
hoare-load

⊢ {l 7→ v ∧ [[y]] = l} x = [y] {l 7→ v ∧ [[x]] = v ∧ [[y]] = l, [⊥,⊥]}

hoare-store

⊢ {l 7→ v ∧ [[x]] = l ∧ [[y]] = u} [x] = y {l 7→ u ∧ [[x]] = l ∧ [[y]] = u, [⊥,⊥]}

frame
c does not modify program variables freely occurring in F

⊢ {P}c{Q, [Qbrk, Qcon]}
⊢ {P ∗ F}c{Q ∗ F, [Qbrk ∗ F,Qcon ∗ F]}

Fig. 12 Additional Proof Rules for Separation Logics

In addition, we assume that there is no memory load in an expression. Every
memory operation is performed as a load or store command. This is similar to
the Clight program in CompCert [40] and the C program in VST-Floyd [5].

To verify these memory operations, figure 12 adds two standard primary
rules, hoare-load and hoare-store, to our previous logic in section 2. The
frame rule is the main focus of this section.

8.1.1 Frame Rule and More Potential Shallow Embeddings

The frame rule allows prover to remove unused separating conjuncts (asser-
tions in separation logics) of memory from both pre-/post-conditions and
prove the specification with remaining memories. Gotsman et al. [41] proved:
if the operational semantics satisfies the frame property, then the frame rule
will always generate valid conclusions from valid assumptions. The following
hypotheses state the frame property via a big-step semantics and via a small-
step semantics. We use σ′ ⊕ σ to represent the disjoint union of two pieces of
memory, σ′ and σ.

Hypothesis 20 For any c, ek, σ1, σ
′
2 and σ,

• if (c, σ1 ⊕ σ) ⇑, then (c, σ1) ⇑;

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 53

• if (c, σ1 ⊕ σ) ⇓ (ek, σ′
2), then either (c, σ1) ⇑ or σ′

2 = σ2 ⊕ σ for some σ2 and
(c, σ1) ⇓ (ek, σ2).

Hypothesis 21 For any c1, c2, κ1, κ2, σ1, σ
′
2 and σ,

• if (c1, κ1, σ1 ⊕ σ) ̸→c, then (c1, κ1, σ1) ̸→c;

• if (c1, κ1, σ1 ⊕ σ) →c (c2, κ2, σ
′
2), then either (c1, κ1, σ1) ̸→c or σ′

2 = σ2 ⊕ σ for
some σ2 and (c1, κ1, σ1) →c (c2, κ2, σ2).

These two properties are true for most reasonable languages (includ-
ing realistic languages like C). And Gotsman’s conclusion holds for ⊨b, ⊨w,
and ⊨c (respectively stand for the validity definition under big-step based
embedding, weakest precondition based embedding, and continuation-based
embedding). For example, theorem 22 proves the frame rule in the big-step
based embedding.

Theorem 22 The frame rule holds for the big-step based embedding defined in
section 4.1, if the hypothesis 20 is true.

Proof To prove ⊨b {P ∗ F}c{Q ∗ F, [Rbrk ∗ F,Rcon ∗ F]}, we need to show that for
any σ ⊨ P ∗ F (1) ¬ (c, σ) ⇑, and (2) for all ek, σ2, if (c, σ) ⇓ (ek, σ2), σ2 satisfies
corresponding post-conditions with the frame F according to ek.

According to the premise ⊨b {P}c{Q, [Rbrk, Rcon]}, we know for any σ1 ⊨ P
(i) ¬ (c, σ1) ⇑, and (ii) for all ek, σ2, if (c, σ1) ⇓ (ek, σ2), σ2 satisfies corresponding
post-conditions without the frame F according to ek.

We can split σ, according to σ ⊨ P ∗ F , into σ1 and σ′ satisfying

σ = σ1 ⊕ σ′ and σ1 ⊨ P and σ′ ⊨ F.

By (i), we know ¬ (c, σ1) ⇑. And by hypothesis 20, we have ¬ (c, σ1 ⊕ σ′) ⇑ because
otherwise we have a contradiction and we prove (1).

To prove (2), by hypothesis 20, for any ek, σ2 with (c, σ1 ⊕ σ′) ⇓ (ek, σ2), we
know that

• either (c, σ1) ⇑, which contradicts with the premise (i) and finishes the proof;

• or there exists σ′
2 with σ2 = σ′

2 ⊕ σ′ and (c, σ1) ⇓ (ek, σ′
2). By (ii), we know

σ′
2 satisfies corresponding post-conditions without the frame F according to ek

(i.e., σ′
2 ⊨ Q, σ′

2 ⊨ Rbrk, or σ′
2 ⊨ Rcon). Since σ′ ⊩ F , we know σ2 = σ′

2 ⊕ σ′

satisfies corresponding post-conditions with the frame F according to ek (i.e.,
σ2 ⊨ Q ∗ F , σ2 ⊨ Rbrk ∗ F , or σ2 ⊨ Rcon ∗ F), which finishes the proof.

□

Interestingly, a different style of shallow embeddings for separation logic
[42] are widely used and the frame rule will hold intrinsically. The frame rule
in this formalization is called the ”baked-in frame rule” in some literatures. For
any shallow embedding ⊨x among ⊨b, ⊨w, and ⊨c, it defines the Hoare triple as

⊨sep−x {P}c{Q, [Rbrk, Rcon]} iff. for any F,⊨x {P∗F}c{Q∗F, [Rbrk∗F,Rcon∗F]}.

Springer Nature 2021 LATEX template

54 Deep Embedding v.s Shallow Embedding

Taking continuation based shallow embedding for example, we can use another
definition: ⊨sep−c {P}c{Q, [Rbrk, Rcon]} iff. for arbitrary continuation κ and
arbitrary frame F (also a separation logic assertion),

if

{Q ∗ F}(skip, κ)
{Qbrk ∗ F}(break, κ)
{Qcon ∗ F}(continue, κ)

then {P ∗ F}(c, κ).

This is the way how shallowly embedded VST defines its Hoare triples.
Under such embedding, we can easily verify the frame rule without
using the frame property of small-step operational semantics. The premise
⊨sep−c {P}c{Q, [Rbrk, Rcon]} means that for arbitrary frame F ′′,

⊨c {P ∗ F ′′}c{Q ∗ F ′′, [Rbrk ∗ F ′′, Rcon ∗ F ′′]}.

Let F ′′ = F ∗ F ′. Then we know ⊨c {(P ∗ F) ∗ F ′}c{(Q ∗ F) ∗ F ′, [(Rbrk ∗ F) ∗
F ′, (Rcon ∗ F) ∗ F ′]} for any F and F ′, which exactly states the conclusion of
frame:

⊨sep−c {P ∗ F}c{Q ∗ F}.
Although such sep−x embedding does not invalidate any primary rules or
extended rules we have mentioned so far, it does make other proofs more
complicated since we need to deals with this extra frame F . In comparison,
both embedding styles are feasible. The original one makes proofs of other
primary rules and extended rules relatively concise, while the sep−x version
makes the proof of the frame rule simple.

To summarize, in a shallow embedding, we can either directly prove it if
hypothesis 20 and hypothesis 21 are true, or use the baked-in frame rule and
reprove other rules using the new shallow embedding ⊨sep-x. It does not matter
whether this is a primary rule or an extended rule in a shallow embedding
because both type of proof rules are just lemmas.

8.1.2 Frame Rule and Deep Embeddings

In deeply embedded program logics, we can either choose to make frame a
primary rule or treat it as an extended rule.

The former option means that the separation logic’s soundness is based on
the fact that frame preserves Hoare triple’s validity. This proof is very similar
to the verification of frame in shallowly embedded logics. When developing
a deeply embedded logic based on a shallowly embedded logic (see section 6),
one could directly reuse the proof of frame rule in the shallow embedding.
However, as discussed in previous sections, adding one more primary rule to
the proof system may invalidate the other proofs because every case analysis
and inductions on proof trees will have one more branch to prove. In the case of
frame rule, although extended rules we have discussed may not be invalidated
by this extra case, such choice would cause more uncertainty when we want

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 55

to add more extended rules where this extra case may be unprovable. Keeping
the proof system concise with only singleton rules, compositional rules, and
the consequence rule will make the logic more extensible and thus we give up
this design choice and prove frame rule as an extended rule.

Nevertheless, we are not yet able to prove it with our previous deeply
embedded program logic by simple induction over the proof tree of {P}c{Q}.
The induction steps of hoare-load and hoare-store are not provable. We
should allow these rules to be compatible with extra frames. For example, we
use hoare-load-frame to replace hoare-load.

hoare-load-frame

⊢ {F ∗ l 7→ v ∧ [[y]] = l} x = [y] {F ∗ l 7→ v ∧ [[x]] = v ∧ [[y]] = l, [⊥,⊥]}

Then, we can easily prove the frame rule by induction over the proof tree.
Similarly, for a language with more commands, we only need to guarantee
proof rules for memory related operations are compatible with extra frames.

To summarize, there are also two ways to formalize the frame rule in a
deep embedding: either directly admit it as a primary rule, or bake the frame
rule into singleton rules for memory operations. In both way, we need to admit
the frame rule as part of the primary rules.

8.2 Procedure Calls & Hypothetical Frame Rule

In this section, we further extend the language and logic in figure 12 with
procedure calls. Figure 13 adds the command for procedure calls, call f(),
where procedure calls have no arguments or return value. Function arguments
and return values are written to specific locations to be transferred between
the caller and the callee.

Different from logics in previous sections, the judgement of the logic
in figure 13 takes the form of ∆ ⊢ {P}c{Q, [R⃗]}. Here, ∆ is the func-
tion hypothesis (or type-context in VST), containing a list of Hoare triples
{Pi}ki{Qi} specifying the pre/post-condition of the procedure with identifier
ki ∈ FuncID. With the function hypothesis, hoare-call can determine the
effect of procedure call by looking up the callee’s specification in ∆.

Shallow embeddings of judgement involving procedure calls[43] are differ-
ent from those in section 4. Taking the denotational semantics based shallow
embedding ⊨b for example, we introduce η in (18), a mapping from procedures
ki to their denotations, to avoid circularity.

η ∈ FuncID→ state→ state→ exit kind→ Prop (18)

We use η(ki) to lookup procedure’s denotation and c[[η]] to represent
the program after substituting call to procedures by their denotations.
The shallow embedding {Pi}ki{Qi}for i≤n ⊨b {P}c{Q, [R⃗]} is defined as:

for any η, ⊨b {Pi}η(ki){Qi, [⊥,⊥]} for all i ≤ n can imply ⊨b {P}c[[η]]{Q, [R⃗]}.

Springer Nature 2021 LATEX template

56 Deep Embedding v.s Shallow Embedding

While-CF with Memory Operations and Procedure Calls

c ∈ command := · · · | x = [y] | [x] = y | call f()

Procedure Call Proof Rules
hoare-call

{Pi}ki{Qi}for i≤n ⊢ {Pi} call ki {Qi, [⊥,⊥]}

hypo-frame
c modifies program variables freely occuring in R only through ki

{Pi}ki{Qi}for i≤n ⊢ {P}c{Q, [Qbrk, Qcon]}
{Pi ∗R}ki{Qi ∗R}for i≤n ⊢ {P ∗R}c{Q ∗R, [Qbrk ∗R,Qcon ∗R]}

Fig. 13 Additional Proof Rules for Separation Logics and Procedure Calls

In a logic combining separation logic and procedure call, we can generalize
the frame rule to the hypothetical-frame rule in figure 13, which was
first proposed by O’Hearn et. al [43]. This rule allows extend specifications of
both the main program c and procedures ki it invokes by composing an extra
frame R to their preconditions (Pi and P) and postconditions (Qi and Q). It
is easily derivable in a deeply embedded logic by induction over the proof tree
with modified atomic rules in section 8.1.1, and it is proved for the shallow
embedding we introduced in this section by O’Hearn et. al [43].

8.3 Total Correctness

Throughout the paper, we have been discussing the Hoare logic for partial cor-
rectness, where we only require the program to produce no error and its output
and ending state satisfying certain assertions. Another correctness property
that people care about a program is its total correctness. The total correct-
ness adds one more condition on top of the partial correctness: the execution
of the program terminates.

In a simple While language with only assignment, sequential composition,
if-statement, and while-loop, the only way to cause non-termination is exe-
cuting an infinite-loop. A famous approach to prove the termination of a loop
is through loop variant, and it is easy to instantiate in a Hoare logic [44].
For example, the while-total rule below uses an expression e as the loop-
variant, which evaluates to some nature number. The value of e is guaranteed
to decrease and when it reaches 0, the loop terminates. With the while-total
rule and other standard proof rules for other language constructs (e.g., those in
figure 2), a program logic can reason about the total correctness of the While
language.

while-total

I ∧ [[b]] = true ⊢ [[e]] > 0
∀n. ⊢total {I ∧ [[b]] = true ∧ [[e]] = n}c{I ∧ [[e]] < n}

⊢total {I}while(b) c{I ∧ [[b]] = false}

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 57

In practice, people may care how long does a program terminates rather
than just whether a program terminates. Time complexity analysis and cost
analysis can also be integrated into a Hoare logic. One approach to accomplish
that is to reason about time credits, a resource that each step of execution
needs to consume, in the pre-/post-conditions of a Hoare triple. Charguéraud
et. al [45] formalize a separation logic framework with time credits and use it
to verify the amortized complexity of a union-find implementation. We may
equipped the proof rule for the while-loop with time credits as while-credit
rule21 below. The time credit is represented by $n in the assertion for some
positive integer n. To verify each iteration of a loop, the user of this rule need
to split the time credit resource into two parts ($n1 and $n2), and this iteration
will consumes one part of the credit $n1 while the remaining iteration will
consume the other $n2. A loop can finish within certain steps represented by
a time credit, if the prover can find a way to dispense the time credit correctly
to each iteration.

while-credit

⊢credit {I ∧ [[b]] = true ∧ $n1 ∗ $n2}c{I ∗ $n2}
⊢credit {I ∗ $n2}while(b) c{I ∧ [[b]] = false}

⊢credit {I ∗ $n1 ∗ $n2}while(b) c{I ∧ [[b]] = false}

As we can see, the time credit approach is also a kind of the loop-variant. But
it is more expressive and can assert the upper bound of a program’s execution
time.

This paper mainly focuses on partial correctness, but we believe many
extended rules also apply to total correctness verifications, which is left as a
future work.

8.4 Non-Determinism

Non-determinism is also a feature people want to support with Hoare logic,
especially when verifying non-deterministic programs like concurrent pro-
grams. There are mainly two types of non-determinism related to a program-
ming language: the demonic non-determinism and the angelic non-determinism
[46].

In a program, demonic non-determinism is caused by commands that may
non-deterministically yield different behaviors that could falsify the specifica-
tion, while angelic non-determinism is caused by commands that may choose
among different behaviors the one that could satisfy the specification. For
example, the simple programming language below consists of both demonic
(⊓) and angelic (⊔) non-determinism.

c ∈ command := skip | x = e | c1 ;; c2 | c1 ⊓ c2 | c1 ⊔ c2

21Different from previous loop rules, while-credit is more like the while-unroll1 rule which
verifies one iteration of the loop per application of the rule. Provers need to induct over the number
of total iteration in the meta-logic to use this proof rule.

Springer Nature 2021 LATEX template

58 Deep Embedding v.s Shallow Embedding

The demonic and angelici rule clearly explains the difference between two
types of non-determinism. When verifying a demonic choice c1 ⊓ c2 satisfying
some Hoare triple, the prover need to prove that both choices satisfies it,
otherwise, the program can non-deterministically choose to execute the one
that does not satisfy the triple. But when verifying an angelic choice c1⊔c2, the
prover only need to show that one of the choices are correct, and the program
will non-deterministically choose to execute the one that satisfies the triple.

demonic
⊢ {P}c1{Q} ⊢ {P}c2{Q}

⊢ {P}c1 ⊓ c2{Q}
angelici

⊢ {P}ci{Q}
⊢ {P}c1 ⊔ c2{Q}

However, in most of realistic programming languages, there are only coun-
terparts for demonic non-deterministic, e.g., random number generator and
concurrent interleaving. The angelic non-determinism is often integrated when
developing a program logic for the programming language. For example, when
verifying concurrent programs, verifiers use auxiliary states (also known as
ghost states) to support their proof and they will insert auxiliary code at
certain lines of the original code []. These auxiliary code can only update aux-
iliary states and their purpose is to maintain certain invariant of the entire
concurrent system. Before proving concurrent programs, these auxiliary code
are non-deterministic (no one knows what code will be inserted at each line).
When proving these programs, provers will choose auxiliary code so that
these code will help establish specifications, and therefore, they are angelic
non-deterministic.

Iris [6] takes one step further by embedding these ghost updates as the
so-called frame preserving updates in the assertion language. Informally, the

frame preserving update
·|⇛ P means that after some ghost transitions admit-

ted by the underlying state, the new state will satisfy the assertion P . Below
shows Iris’s weakest precondition in section 4.2 equipped with the frame pre-
serving update. Different from the previous definition, here, when given the
iProp of the pre-state S(σ), we can first make some frame preserving updates,
after which the expression e executes one step on the physical memory. After
this one step execution, we can also make some frame preserving updates to
the ghost state so that the weakest precondition for the remaining expression
WP e′ {Φ} is satisfied on the new physical state and ghost state. Provers can

choose angelically which ghost transition to make when proving
·|⇛ P , and

thus making it angelic non-deterministic.

WP e {Φ} ≜ (e ∈ Val ∧ ·|⇛Φ(e))

∨
(
∀σ. e /∈ Val ∧ S(σ)−∗ ·|⇛

(
reducible(e, σ)

∧ ▷∀e′, σ′. ((e, σ)→t (e
′, σ′))−∗ ·|⇛ (S(σ′) ∗WP e′ {Φ})

))
Although this paper’s logic formalization does not consider angelic non-

determinism, we do allow demonic non-determinism. Firstly, three shallow

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 59

Hoare logic embeddings in section 4 requires any post-state reachable in the
execution satisfy certain properties22. Therefore, if a program has demonic
non-determinism, the logic will ask provers to verify all possible executions
of the program to be correct. Secondly, all extended proof rules discussed in
the paper do not require the program to be deterministic, and moreover, our
proofs of extended rules under all embeddings do not rely on the determinism
of the program.

8.5 Impredicative Assertions

Impredicative assertions are assertions whose universe quantifiers and exis-
tential quantifiers can quantify over assertions variables. And these assertion
languages should also admits Hoare triples as assertions. This feature is
required for our hoare-ex proof in section 5.1 to work.

For a shallowly embedded assertion language, which we use for our proofs in
section 5, it is easy to formalize these impredicative assertions because we can
inject meta-logic propositions into assertions. Definitions (19) and (20) shows
how to define the interpretation (shallow embeddings) of these assertions.

σ ⊨ ∃P0.S(P0) iff. there exists an assertion P0 s.t. σ ⊨ S(P0) (19)

σ ⊨ M iff. M where M is a meta-logic proposition like ⊢ {P}c{Q, [R⃗]} (20)

If we would use a deeply embedded assertion language, we need to construct
the counterpart of the provable judgement and higher-order quantifiers in the
assertion language. This is possible, and defining such a syntax system is not
hard. The following definition could be a reasonable candidate:

x ∈ individual-variables-name
A ∈ assertion-variable-name
t ::= . . . | x
P ::= t = t | ¬P | P ∧ P | ∃x. P | ∃A. P | ⊢ {P}c{P, [P, P]}

Technical problems may appear when defining assertions’ interpretation
σ ⊨ P . A simple syntactical substitution of the quantified variable for its value
will result in a non-decreasing recursive interpretation function. For example,
in the definition below, the assertion P ′ that substitutes A in P may be larger
than P , which makes the interpretation function non-terminating.

σ ⊨ ∃A.P ⇐⇒ there exists assertion P ′ such that σ ⊨ P [A/P ′]

Instead of a direct syntactical substitution, we can use an interpretation
assignment J to store interpretations of free variables.

J ∈ assertion-variable-name→ (state→ Prop)

22Any post-state need to satisfy the post-condition, the weakest precondition, and the
safe(−,−,−) predicate respectively in three shallow embeddings.

Springer Nature 2021 LATEX template

60 Deep Embedding v.s Shallow Embedding

We use the judgement σ, J ⊨ P to help define the interpretation of an asser-
tion. For higher-ordered existential quantifiers, we choose in the meta-level the
interpretation d of the assertion variable A. And then assign d to A in the
assignment J .

σ, J ⊨ ∃A.P ⇐⇒ there exists d ∈ state→ Prop such that σ, J [A/d] ⊨ P

This makes an assertion to be potentially an open term with free variable A
occurring in P . When we need to interpret a free assertion variable A on a
state σ, we simply query J for A’s interpretation function and apply it to σ.

σ, J ⊨ A ⇐⇒ J [A](σ)

It is also easy to interpret Hoare triple assertions because we can directly
interpret them as their validities (shallow embeddings). Taking big-step based
embedding for example, we simply copy and paste the definition in section 4.1
and add assignment J when interpreting pre-/post-conditions.

σ, J ⊨ (⊢ {P}c{Q, [R⃗]}) ⇐⇒

for all σ1, J ⊨ P , ¬ (c, σ1) ⇑
and for all ek, σ2, if (c, σ1) ⇓ (ek, σ2)

then ek = ϵ implies σ2, J ⊨ Q

and ek = brk implies σ2, J ⊨ Rbrk

and ek = con implies σ2, J ⊨ Rcon

For a closed assertion P , we will interpret it on any assignment because it
should not depend on it.

σ ⊨ P ⇐⇒ P is closed and for any J, σ, J ⊨ P

Another approach is to inductively define the interpretation of assertions
as a deep embedding, which is proposed by Zhaozhong and Zhong [15]. For
example, the interpretation rule for the existential quantifier is the following.

P ′ ∈ assertion σ ⊢ P [A/P ′]

σ ⊢ ∃A.P

This definition only defines the interpretations for assertions that have finite
derivation trees. Assertions with unbounded size (brought by higher-ordered
quantifiers) will not have a finite derivation tree as well as an interpretation.
This deeply embedded interpretation is then proved sound w.r.t. assertions
true meaning. Interested readers may refer to their work [15] for more details.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 61

8.6 The Soundness Proof Technique

Section 3.3 mentioned a soundness proof technique, where logic developers first
prove the logic is sound w.r.t. some auxiliary validity definition ∥= S, i.e.,

forall ⊢ S implies ∥= S, (21)

and then prove this auxiliary validity implies the real validity ⊨ S, i.e..

forall ∥= S implies ⊨ S. (22)

The auxiliary validity ∥= S differs from the real validity ⊢ S in that ∥= S usu-
ally has extra information about programs execution which makes proving (21)
easier, while this information is not available when proving the real validity
⊨ S and therefore a lemma (22) that erases these information is required.

For example, in Brookes’s soundness proof for the concurrent separation
logic [17], they use the thread local enabling as the semantics that defines
the auxiliary validity. The thread local enabling semantics is annotated with
available resource invariants, and whenever an action needs access to shared
resources, it will access these invariant annotations and make sure it can still
preserve the invariant when it finishes. In this way, all threads will respect
the invariant and cooperate property when executing concurrently under the
thread local enabling semantics. These invariant notations come directly from
the concurrent separation logic judgement, and therefore, it is easy to prove
that any provable judgement with invariant Γ is valid under the thread local
enabling semantics with the invariant annotation Γ. However, this annotation
is not available in the machine semantics, the real semantics of a program’s
execution on a machine, since the machine will not tell any thread what invari-
ant they should respect. Therefore, Brookes uses a connection property to
show that erasing the invariant annotation in a thread local enabling reduction
produce an equivalent machine semantics reduction, and thus the auxiliary
validity can induce the real validity.

In some works, e.g., in Iris [6], adequacy theorem serves the purpose of prov-
ing the logic’s soundness w.r.t. the real validity. Iris uses shallowly embedded
weakest precondition to embed the Hoare logic, which allows angelic updates
to ghost states when the program takes a step in the physical memory. Only
with both ghost states and physical memory can a weakest precondition be
established, while a program is supposed to be correct with only access to
physical memories. Therefore, they use an adequacy theorem, rephrased under
the sequential execution in theorem 23, to derive the real validity of a whole
program e with no ghost component in the precondition True and the post-
condition Φ (since it is a first-order predicate). As a result, theorem 23 indicates
that any whole program Hoare triple proved in Iris is valid under the machine
semantics and without any ghost updates.

Springer Nature 2021 LATEX template

62 Deep Embedding v.s Shallow Embedding

Theorem 23 (Iris Adequacy) Let Φ be a first-order predicate. If True−∗WP e {Φ}
is true and for any σ, e′, σ′ such that (e, σ) →∗

t (e′, σ′), then

• Either (e′, σ′) can be further reduced.

• Or e′ is some terminal value v, and Φ(v) is true.

To conclude, proving soundness of a program logic with advanced features
like concurrency can be challenging. And one may need to introduce a layer
of auxiliary validity in the soundness proof.

9 Real Projects

Besides the program logic for our WhileCF toy language discussed so far, we
also implement proposed theories in two real verification projects. Specifically,
in section 9.1, we use the scheme in section 6 to lift originally shallowly embed-
ded VST[4] into a deeply embedded VST, where extended rules are easily
proved. In section 9.2, we reproduce the weakest precondition based shallow
embedding with control flows (section 4.2) in Iris[6] as the logic Iris-CF. We
then apply the lifting scheme in section 6 to this shallowly embedded Iris-CF
to obtain a deeply embedded logic, Iris-Imp23.

9.1 Deeply Embedded VST

We build deeply embedded VST24 based on the shallowly embedded VST, a
verification framework for C programs. It is originally designed to use contin-
uation based shallow embedding to formalize the Hoare logic. Different from
our toy language and toy logic, VST is designed to support named function
invocations as well and we demonstrate the details they add to the triple.

VST uses the continuation based shallow embedding with small-step
semantics defined as ge ⊢ (c, κ,m)→ (c′, κ′,m′). Different from our small-step
semantics in section 4, it contains a global environment ge that stores external
variables and functions. When external call occurs, it will look up the function
body from ge and add it to the continuation κ.

VST’s triples take the form of ∆ ⊨ {P}c{Q, [R⃗]}, where ∆ is the type-
context containing function specifications. Its formalization in Coq is similar
to the continuation based shallow embedding (⊨sep−c) discussed in this paper.
Specifically, the triple means: if every function obeys specifications in ∆, then

23Iris-CF and Iris-Imp are only for demonstration of our theory. Users of Iris may prefer using
the weakest precondition reasoning style instead of the Hoare logic discussed in this paper. But
Iris-CF and Iris-Imp are still good examples to show how to lift weakest precondition based
shallow embeddings to deep embeddings, and may benefit developers of other framework using
this embedding.

24Our deeply embedded VST has been integrated into the VST repository
(https://github.com/PrincetonUniversity/VST) and we include the version when it was first inte-
grated. It consists of two files, SeparationLogicAsLogic.v and SeparationLogicAsLogicSoundness.v
in the floyd folder.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 63

for all continuations κ and all separation logic frames F ,

if

{Q ∗ F}(skip, κ)
and {Rbrk ∗ F}(break , κ)
and {Rcon ∗ F}(continue, κ)
and {Rret ∗ F}(return , κ)

, then {P ∗ F}(c, κ).

A function f obeys specification {P}f{Q} in ∆ iff. its function body c has
∆ ⊨ {P}c{Q}. VST uses step-index to resolve the circularity in the definition.

The shallowly embedded VST does not provide extended rules like seq-
inv and nocontinue, which we prove in section 5.4 and find their proof
construction challenging. We then seek to formalize a deeply embedded Hoare
logic. As proposed in section 6, we first define the provable predicate for Hoare
triple by primary proof rules (atomic rules, compositional rules, and the con-
sequence rule) and then directly use the validity definition and soundness
proofs in the original shallowly embedded VST to establish the soundness of
our deeply embedded VST. We then prove extended rules in the deep embed-
ding by induction over proof tree. As discussed in section 6 and section 8.1.2,
we choose to treat hoare-ex and frame rule as extended rules and prove
them along with other extended rules, although they were proved sound in
the original shallowly embedded VST. Also, VST did support proof rules like
hoare-load-frame and hoare-store-frame in its original development.
Thus, those modifications discussed in the end of section 8.1.2 are not even
needed.

Evaluation.

lines of code

Shallow Embedding Proofs of Primary Rules 12068

Deep Embedding Definition 297

Deep Embedding Soundness Proof 261

Deep Embedding Extended Rule Proofs 2114

Modification to User Proofs 0

Table 3 Evaluation of Deeply Embedded VST

We demonstrate evaluation of our deeply embedded VST in table 3. It only
takes very few lines of code to formalize primary rules and logic soundness
by reusing original proofs in the shallow embedding. We are able to formalize
extended rules in the deep embedding with reasonable lines of code, which was
not available in the shallow embedding. Moreover, there is no need to modify
user proofs and users can upgrade their projects depending on the shallowly
embedded VST to our deeply embedded one for free.

Springer Nature 2021 LATEX template

64 Deep Embedding v.s Shallow Embedding

9.2 Shallowly Embedded Iris-CF & Deeply Embedded
Iris-Imp

Iris is a representative proof system that uses small-step semantics and weak-
est precondition to embed their program logic. There have been works to
extend Iris with control flow reasoning [47, 48] but not using the multiple post-
condition. So we first equip Iris with it and present Iris-CF so that we can have
an instance of weakest precondition based embedding in this paper and discuss
the situation of extended rules in Iris-CF. To evaluate our lifting approach in
section 6, we lift Iris-CF to a deeply embedded program logic Iris-Imp.

Iris-lambda is a ML-like language for many Iris project’s demonstration,
which can be extended to more realistic programming languages (e.g., the
λRust in the RustBelt[49]). To evaluate our theory in the Iris framework, we
extended Iris-lambda into Iris-CF:

v ∈ Val ::= () | z | true | false | l | λx.e | · · ·
e ∈ Expr ::= v | x | e1(e2) | ref(e) | !e | e1 ← e2 | fork{e} | e1 ;; e2 | loope e

| if e1 then e2 else e3 | break e | continue | call e | return e | · · ·
K ∈ Ctx ::= • | K(e) | v(K) | ref(K) | !K | K ← e | v ← K | K ;; e | loope K

| ifK then e2 else e3 | breakK | callK | returnK | · · ·

Underlined ones are what we add to the language to support control flow. We
refer the reader to appendix for its semantics and Iris’s original paper [6] for
explanations of Iris-lambda’s features.

WP e {ΦN , [ΦB ,ΦC ,ΦR]} ≜(e ∈ Val ∧ ˙|⇛ΦN (e))

∨(∃v ∈ Val. e = break v ∧ ˙|⇛ΦB(v))

∨(e = continue ∧ ˙|⇛ΦC())

∨(∃v ∈ Val. e = return v ∧ ˙|⇛ΦR(v))

∨
(
∀σ. e /∈ terminals ∧ S(σ)−∗ ˙|⇛

(
red(e, σ)

∧ ▷∀e′, σ′, e⃗f .
(
(e, σ)→t (e

′, σ′, e⃗f)
)
−∗ ˙|⇛(

S(σ′) ∗WP e′ {ΦN , [ΦB ,ΦC ,ΦR]}

∗∗e′∈e⃗fWP e′{⊤}
)))

Fig. 14 Weakest Precondition in Iris-ControlFlow

We define the weakest precondition in Iris logic with control flow in
figure 14. Hoare triple’s validity is defined by weakest precondition as we

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 65

demonstrated in related projects in section 4.2. The definition is consistent
with our previous weakest precondition based shallow embedding in section 4.2,
where we have 4 branches for 4 different terminals, value, break, continue, and
return terminals, and 1 branch for the preservation case. The definition uses
many Iris notations and features. For example, it has later modality ▷, which is
necessary in Iris’s step-indexed model to prevent circularity; it has the update
modality ˙|⇛ , which allows angelic updates as mentioned in section 8.4; it
includes weakest-preconditions for forked threads so that it can reason about
concurrency. Most of them are not strongly related to the topic of this paper,
and we refer readers to Iris’s original paper [6] for a detail explanation.

All primary proof rules in section 2.1 are established in Iris-CF and figure 15
shows a snippet of it.

val

⊢ {P (v)}v{P, [⊥,⊥,⊥]}
break

⊢ {P}e{Q}
⊢ {P}break e{⊥, [Q,⊥,⊥]}

continue

⊢ {P}continue{⊥, [⊥, λ . P,⊥]}
return

⊢ {P}e{Q}
⊢ {P}return e{⊥, [⊥,⊥, Q]}

seq

⊢ {P}e1{λ .Q, [R⃗]} ⊢ {Q}e2{Φ, [R⃗]}
⊢ {P}e1 ;; e2{Φ, [R⃗]}

call
⊢ {P}e{Q, [⊥,⊥, Q]}
⊢ {P}call {Q, [⊥,⊥,⊥]}

loop
⊢ {I}e{λ . I, [Q,λ . I, R]}
⊢ {I}loope e{Q, [⊥,⊥, R]}

if

⊢ {P}e1{λv. (v = true ∧R1) ∨ (v = false ∧R2), [R⃗]}
⊢ {R1}e2{Q, [R⃗]} ⊢ {R2}e3{Q, [R⃗]}
⊢ {P}if e1 then e2 else e3{Q, [R⃗]}

Fig. 15 A Snippet of Primary Rules in Iris-CF

Extended Rules in Shallowly Embedded Iris-CF.

Almost all extended rules from section 2 are valid25. However, the seq-inv
rule is not true due to the step-indexed model of Iris. Specifically, we need
to match the later modality for programs on the two side of the simulation
relation, which means in (c1, κ1) ∼ (c2, κ2), each step of (c2, κ2) must simulate

25The nocontinue rule has an additional condition that there are no unscoped continue com-
mand in heap, because otherwise, in a higher-ordered language like Iris-lambda, these continue
will be loaded into the program and invalidate the rule’s conclusion. We do not consider
loop-nocontinue in Iris because it does not use for-loops in the language.

Springer Nature 2021 LATEX template

66 Deep Embedding v.s Shallow Embedding

at least one step of (c1, κ1). In other words, in the termination case, if the
source terminates, the target must terminate immediately. One special case of
seq-inv is

WP v ;; c{Φ} −∗ ▷WP c{Φ}
⇔

(
∀σ. S(σ)−∗ · · · −∗ (S(σ) ∗WP c{Φ})

)
−∗ ▷WP c{Φ}

where v ;; c has one more step than c. If the current resource conflicts with all
S(σ), which is possible in Iris because provers can choose the resource algebra,
then the premise is a tautology (False−∗ · · · −∗ (S(σ) ∗WP c{Φ})), but we can
always find a c whose weakest precondition violates the resource we choose.
Therefore, the special case here can not be proved, which is necessary in the
seq-inv proof.

Deeply Embedded Iris-Imp.

We then lift the shallowly embedded Iris-CF into the deeply embedded Iris-Imp
[10] for an imperative language:

e′ ∈ Exprimp ::= v | x | ref′(e′) | !′e′ | e′1 ←′ e′2 | fork′{e′}
| e′1 ;; e′2 | if ′e′1 then e

′
2 else e

′
3 | loop′e′e′

| break ′e′ | continue′ | call ′e′ | return ′e′ | · · ·

which is directly encoded using Iris-CF’s expressions. The ∥e′∥ assigns the
encoding to Iris-Imp commands and we can then reuse Iris-CF’s semantic
definitions and logic judgement for developing the validity of Iris-Imp logic
(definition 5 and definition 6).

∥v∥ ≜ v ∥e′1 ;; e′2∥ ≜ (λ . ∥e′2∥)(∥e′1∥)
∥ref′(e′)∥ ≜ ref(∥e′∥) ∥loop′e′e′∥ ≜ loop∥e′∥∥e′∥
· · · · · ·

Definition 5 (Validity) ⊨iris-imp {P}e′{Q, [R⃗]} is true, iff., ⊨iris-cf {P}∥e′∥{Q, [R⃗]}
is true, i.e., P −∗WP ∥e′∥{Q, [R⃗]} is true.

Definition 6 (Iris-Imp Logic) ⊢iris-imp {P}e′{Q, [R⃗]} is true, iff., the triple can be
constructed by primary rules of Iris-CF (in figure 15) with the bind rule removed
and expressions changed to those in Iris-Imp.

We can easily prove its soundness in theorem 24 by reusing the sound-
ness proof of Iris-CF, because we have defined the validity of Iris-Imp as an
encoding of the validity of Iris-CF. Moreover, we can prove all extended rules
(theorem 25) by following proofs for the deep embedding in section 2.

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 67

Theorem 24 (Soundness of Iris-Imp Logic) The deeply embedded logic Iris-Imp is
sound, i.e., ⊢iris-imp {P}e′{Q, [R⃗]} implies ⊨iris-imp {P}e′{Q, [R⃗]}.

Theorem 25 (Extended Rules of Iris-Imp Logic) All three categories of extended
rules in section 2 is true for the deeply embedded logic Iris-Imp.

10 Related Work

In section 4, we have already introduced various verification projects using
different Hoare logic embeddings. And in this section, we review other work
on program logic embeddings.

Cook’s [9] proof of relative completeness for Hoare logic gives another view
of problems we have discussed in Section 5. We now assume the deeply embed-
ded logic ⊢ S comes with its completeness proof w.r.t. the shallowly embedded
logic ⊨ S, in stead of the incompleteness assumption in Section 5. With the
completeness, the proof of inversion rules under all shallow embeddings can be
greatly simplified. Take seq-inv as an example, the completeness allows entail-
ment from ⊨ {P}c1 ;; c2{Q, [R⃗]} to ⊢ {P}c1 ;; c2{Q, [R⃗]}, and use the seq-inv

under the deep embedding to get ⊢ {P}c1{S, [R⃗]} and ⊢ {S}c2{Q, [R⃗]}. Lastly,
by the soundness of the deeply embedded logic, we get ⊨ {P}c1{S, [R⃗]} and

⊨ {S}c2{Q, [R⃗]} and finish the proof. The completeness enables proofs of
this style for inversion rules, which can be further utilized to simplify proofs
of structural rules and transformation rules. Nevertheless, as we have men-
tioned in Section 5, the completeness proof is often missing for logics in real
verification projects, and our complicated constructive proofs under the shal-
low embedding should be trivial, when compared to the even more complex
completeness proof.

Nipkow [50] compares shallowly and deeply embedded assertion languages
in an early paper. He considers a combination of shallowly embedded pro-
gramming languages, shallowly embedded assertion languages and shallowly
embedded program logics. He also considers a combination of deeply embedded
programming languages, deeply embedded assertion languages and executable
symbolic execution functions. His focus is the comparison between these two
settings, while we compare multiple logic embeddings with fixed language and
assertion embeddings.

PHOAS [51] is a different formalization style beside shallow/deep embed-
dings. It is used for formalizing binders in languages. If we can reason about
triples within assertions in such formalization, our conclusions for the deep
embedding may apply to it.

11 Conclusion

In this paper, we clarify the nomenclature of “deep embedding” and “shallow
embedding” for formalizing programming languages, assertion languages, and
program logics and explore a deep embedding and three different techniques to

Springer Nature 2021 LATEX template

68 Deep Embedding v.s Shallow Embedding

shallowly embed a program logic. We identify a set of extended rules that could
benefit the verification work, and we point out critical proof steps to validate
them under different embeddings. We find they are relatively easier to prove
under the deeply embedded logic because we can use induction over the proof
tree. To alleviate the proof burden of instantiating extended rules for existing
verification tools using shallow embeddings, we propose a method to build
deeply embedded program logics on existing shallowly embedded ones, where
we only need to reuse proofs for primary rules under the shallow embedding
to build the deep one.

We also extend our results from conventional Hoare logics to separation
logics. We present the deeply embedded VST, where we reuse the original shal-
lowly embedded VST’s proofs for soundness proofs of primary rules and prove
extended rules under the deep embedding, which is much easier than the proofs
in the original VST (e.g. if-seq, loop-nocontinue). We also use our result
to implement Iris-CF, which incorporates control flow reasoning into Iris, and
we present both a shallowly embedded Iris-CF logic and a deeply embedded
Iris-Imp logic. With deeply embedded VST and Iris-Imp, we demonstrate the
feasibility of our theory in real verification project.

In conclusion, this paper shows that using different embedding to formalize
a program logic brings different benefits, where the shallow embedding allows
a more straightforward formalization and the deep embedding makes it easier
to add extended proof rules. Our work also indicates the possibility of formal-
izing a deeply embedded logic based on a shallowly embedded logic by reusing
its soundness proof. Moreover, for any shallowly embedded logic (even with
different embedding techniques), we can build its corresponding deeply embed-
ded logic by the same set of primary rules. This could be an efficient way to
extend existing verification tools to support more powerful proof rules like our
extended proof rules.

References

[1] Barras, B., Boutin, S., Cornes, C., Courant, J., Coscoy, Y., Delahaye, D.,
de Rauglaudre, D., Filliâtre, J.-C., Giménez, E., Herbelin, H., et al.: The
coq proof assistant reference manual. INRIA, version 6(11) (1999)

[2] Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a Proof Assistant
for Higher-order Logic. Springer, Berlin Heidelberg (2002)

[3] Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, Berlin
Heidelberg (1994)

[4] Appel, A.W.: Verified software toolchain. In: Proceedings of the 20th
European Conference on Programming Languages and Systems: Part of
the Joint European Conferences on Theory and Practice of Software, pp.
1–17 (2011)

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 69

[5] Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: Vst-floyd:
A separation logic tool to verify correctness of c programs. Journal of
Automated Reasoning 61, 367–422 (2018)

[6] Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer,
D.: Iris from the ground up: A modular foundation for higher-order
concurrent separation logic. Journal of Functional Programming 28, 20
(2018)

[7] Sanán, D., Zhao, Y., Hou, Z., Zhang, F., Tiu, A., Liu, Y.: Csimpl: A rely-
guarantee-based framework for verifying concurrent programs. In: Tools
and Algorithms for the Construction and Analysis of Systems: 23rd Inter-
national Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part I 23, pp. 481–498 (2017).
Springer

[8] Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified character-
istic formulae for cakeml. In: Programming Languages and Systems: 26th
European Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22–29, 2017, Proceedings 26, pp. 584–610
(2017). Springer

[9] Cook, S.A.: Soundness and completeness of an axiom system for program
verification. SIAM Journal on Computing 7(1), 70–90 (1978)

[10] Wang, Z., Tao, Y., Cao, Q.: Coq Formalization of Verifying Programs
with Logic and Extended Proof Rules: Deep Embed V.s. Shallow Embed.
https://github.com/BruceZoom/JAR-Deep-vs-Shallow

[11] Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-
grained concurrent programs. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp.
77–87 (2015)

[12] Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M.,
Hriţcu, C., Sjöberg, V., Yorgey, B.: Software foundations.
https://softwarefoundations.cis.upenn.edu (2010)

[13] Schirmer, N.: Verification of sequential imperative programs in
isabelle/hol. PhD thesis, Technische Universität München (2006)

[14] Yu, D., Hamid, N.A., Shao, Z.: Building certified libraries for pcc:
Dynamic storage allocation. In: Programming Languages and Systems:
12th European Symposium on Programming, ESOP 2003 Held as Part
of the Joint European Conferences on Theory and Practice of Software,

https://github.com/BruceZoom/JAR-Deep-vs-Shallow
https://softwarefoundations.cis.upenn.edu

Springer Nature 2021 LATEX template

70 Deep Embedding v.s Shallow Embedding

ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceedings, pp. 363–379
(2003). Springer

[15] Ni, Z., Shao, Z.: Certified assembly programming with embedded code
pointers. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 320–333 (2006)

[16] Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A practical verifi-
cation framework for preemptive os kernels. In: International Conference
on Computer Aided Verification, pp. 59–79 (2016). Springer

[17] Brookes, S.: A semantics for concurrent separation logic. Theoretical
Computer Science 375(1-3), 227–270 (2007)

[18] Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imper-
ative functional programming with isabelle/hol. In: International Confer-
ence on Theorem Proving in Higher Order Logics, pp. 134–149 (2008).
Springer

[19] Lammich, P., Meis, R.: A separation logic framework for imperative hol.
Archive of Formal Proofs, 161 (2012)

[20] Zhan, B.: Verifying imperative programs using auto2. Archive of Formal
Proofs (2018)

[21] Zhan, B.: Auto2, a saturation-based heuristic prover for higher-order logic.
In: International Conference on Interactive Theorem Proving, pp. 441–456
(2016). Springer

[22] Nipkow, T.: Hoare logics in isabelle/hol. Proof and system-reliability, 341–
367 (2002)

[23] Lammich, P., Nipkow, T.: Purely functional, simple, and efficient imple-
mentation of prim and dijkstra. Archive of Formal Proofs (2019)

[24] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications.
(1955)

[25] Witt, E.: Beweisstudien zum satz von m. zorn. herrn erhard. schmidt
zum 75. geburtstag gewidmet. Mathematische Nachrichten 4(1-6), 434–
438 (1950)

[26] Bourbaki, N.: Sur le théorème de zorn. Archiv der Mathematik 2(6), 434–
437 (1949)

[27] Appel, A.W., McAllester, D.: An indexed model of recursive types for
foundational proof-carrying code. ACM Transactions on Programming
Languages and Systems (TOPLAS) 23(5), 657–683 (2001)

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 71

[28] Jung, R., Lepigre, R., Parthasarathy, G., Rapoport, M., Timany, A.,
Dreyer, D., Jacobs, B.: The future is ours: prophecy variables in separa-
tion logic. Proceedings of the ACM on Programming Languages 4(POPL),
1–32 (2019)

[29] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin,
P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: sel4:
Formal verification of an os kernel. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, pp. 207–220 (2009)

[30] Nanevski, A., Morrisett, G., Birkedal, L.: Hoare type theory, polymor-
phism and separation1. Journal of Functional Programming 18(5-6),
865–911 (2008)

[31] Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot:
dependent types for imperative programs. In: Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming,
pp. 229–240 (2008)

[32] Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Ver-
ifying higher-order programs with the dijkstra monad. ACM SIGPLAN
Notices 48(6), 387–398 (2013)

[33] Jacobs, B.: Dijkstra and hoare monads in monadic computation. Theo-
retical Computer Science 604, 30–45 (2015)

[34] Ahman, D., Hriţcu, C., Maillard, K., Mart́ınez, G., Plotkin, G., Protzenko,
J., Rastogi, A., Swamy, N.: Dijkstra monads for free. In: Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, pp. 515–529 (2017)

[35] Maillard, K., Ahman, D., Atkey, R., Mart́ınez, G., Hriţcu, C., Rivas,
E., Tanter, É.: Dijkstra monads for all. Proceedings of the ACM on
Programming Languages 3(ICFP), 1–29 (2019)

[36] Charguéraud, A.: Program verification through characteristic formulae.
In: Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming, pp. 321–332 (2010)

[37] Charguéraud, A.: Characteristic formulae for the verification of impera-
tive programs. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, pp. 418–430 (2011)

[38] Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified character-
istic formulae for cakeml. In: Programming Languages and Systems: 26th
European Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS

Springer Nature 2021 LATEX template

72 Deep Embedding v.s Shallow Embedding

2017, Uppsala, Sweden, April 22–29, 2017, Proceedings 26, pp. 584–610
(2017). Springer

[39] Reynolds, J.: Separation logic: A logic for shared mutable data structures.
In: LICS 2002: IEEE Symposium on Logic in Computer Science, pp. 55–74
(2002)

[40] Krebbers, R., Leroy, X., Wiedijk, F.: Formal c semantics: Compcert
and the c standard. In: International Conference on Interactive Theorem
Proving, pp. 543–548 (2014). Springer

[41] Gotsman, A., Berdine, J., Cook, B.: Precision and the conjunction rule
in concurrent separation logic. Electronic Notes in Theoretical Computer
Science 276, 171–190 (2011)

[42] Torp-Smith, L.B.N., Yang, H.: Semantics of separation-logic typing and
higher-order frame rules (2005)

[43] O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information
hiding. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 268–280 (2004)

[44] Manna, Z., Pnueli, A.: Axiomatic approach to total correctness of
programs. Acta Informatica 3, 243–263 (1974)

[45] Charguéraud, A., Pottier, F.: Verifying the correctness and amortized
complexity of a union-find implementation in separation logic with time
credits. Journal of Automated Reasoning 62(3), 331–365 (2019)

[46] Back, R.-J., Wright, J.: Refinement Calculus: a Systematic Introduction.
Springer, New York (2012)

[47] Sammler, M., Lepigre, R., Krebbers, R., Memarian, K., Dreyer, D.,
Garg, D.: Refinedc: Automating the foundational verification of c code
with refined ownership types. In: Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language Design and
Implementation, pp. 158–174 (2021)

[48] Timany, A., Birkedal, L.: Mechanized relational verification of concurrent
programs with continuations. Proceedings of the ACM on Programming
Languages 3(ICFP), 1–28 (2019)

[49] Jung, R., Jourdan, J.-H., Krebbers, R., Dreyer, D.: Rustbelt: Securing the
foundations of the rust programming language. Proceedings of the ACM
on Programming Languages 2(POPL), 1–34 (2017)

[50] Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 73

versus deep embedding. In: Theorem Proving in Higher Order Logics:
17th International Conference, TPHOLs 2004, Park City, Utah, USA,
September 14-17, 2004. Proceedings 17, pp. 305–320 (2004). Springer

[51] Chlipala, A.: Parametric higher-order abstract syntax for mechanized
semantics. In: Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming, pp. 143–156 (2008)

Springer Nature 2021 LATEX template

74 Deep Embedding v.s Shallow Embedding

Appendix A Big-step semantics

Figure 15 and figure 16 list the complete big-step semantics for the toy lan-
guage. We use (c, σ) ⇓ (ek, σ′) to denote that the program c starts execution
from state σ will safely terminate in state σ′ with exit kind ek. We use (c, σ) ⇑
to denote that the program c starts execution from state σ will run into an
error.

ref
eval(e, σ) = v h(l) = ⊥

(x = ref(e), (σ, h)) ⇓ (ϵ, (σ[x 7→ l], h[l 7→ v]))

assign
eval(e, σ) = v

(x = e, (σ, h)) ⇓ (ϵ, (σ[x 7→ l], h))

store
eval(e1, σ) = l eval(e2, σ) = v h(l) ̸= ⊥

([e1] = e2, (σ, h)) ⇓ (ϵ, (σ, h[l 7→ v]))

store fail
eval(e1, σ) = l h(l) = ⊥

([e1] = e2, (σ, h)) ⇑

load
eval(e, σ) = l h(l) = v

(x = [e], (σ, h)) ⇓ (ϵ, (σ[x 7→ v], h))

load fail
eval(e, σ) = l h(l) = ⊥

(x = [e], (σ, h)) ⇑

Seq1

(c1, σ1) ⇓ (ϵ, σ3) (c2, σ3) ⇓ (ek, σ2)

(c1 ;; c2, σ1) ⇓ (ek, σ2)

Seq2

(c1, σ1) ⇓ (ek, σ2)

(c1 ;; c2, σ1) ⇓ (ek, σ2)

Seq Fail1

(c1, σ) ⇑
(c1 ;; c2, σ) ⇑

Seq Fail2

(c1, σ1) ⇓ (ϵ, σ2) (c1, σ2) ⇑
(c1 ;; c2, σ1) ⇑

Fig. 15 Big-step semantics of the Toy Language (1)

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 75

if true
eval(e, σ1) = true (c1, σ1) ⇓ (ek, σ2)

(if e then c1 else c2, σ1) ⇓ (ek, σ2)

if true fail
eval(e, σ1) = true (c1, σ1) ⇑
(if e then c1 else c2, σ1) ⇑

if false
eval(e, σ1) = false (c2, σ1) ⇓ (ek, σ2)

(if e then c1 else c2, σ1) ⇓ (ek, σ2)

if false fail
eval(e, σ1) = false (c2, σ1) ⇑
(if e then c1 else c2, σ1) ⇑

for
ek is not brk (c1, σ1) ⇓ (ek, σ3)

(c2, σ3) ⇓ (ϵ, σ4) (for(;; c2) c1, σ4) ⇓ (ϵ, σ2)

(for(;; c2) c1, σ1) ⇓ (ϵ, σ2)

for fail1
(c1, σ1) ⇑

(for(;; c2) c1, σ1) ⇑

for fail2
ek is not brk

(c1, σ1) ⇓ (ek, σ2) (c2, σ2) ⇑
(for(;; c2) c1, σ1) ⇑

for break
(c1, σ1) ⇓ (brk, σ2)

(for(;; c2) c1, σ1) ⇓ (ϵ, σ2)

break

(break, σ) ⇓ (brk, σ)
continue

(continue, σ) ⇓ (brk, σ)

Fig. 16 Big-step semantics of the Toy Language (2)

Appendix B Proofs of Some Extended Rules
in Big-step semantics

We give some proofs of extended rules that are not covered in section 5.2. All
extended rules are proved in our Coq formalization.

Theorem 26 (if-seq) Forall P,Q, R⃗, c1, c2, c3, if

⊨b {P}if e then c1 ;; c3 else c2 ;; c3{Q, [R⃗]},
then

⊨b {P}(if e then c1 else c2) ;; c3{Q, [R⃗]}.

Proof Consider the initial state to be σ1 with σ1 ⊨ P .
If eval(e, σ1) = true, then we know c1 ;; c3 will not cause error, and therefore c1

and c3 will not cause error and (if e then c1 else c2) ;; c3 will not cause error. The
same happens when eval(e, σ1) = false, and we know if e then c1 ;; c3 else c2 ;; c3
will not cause error.

If eval(e, σ1) = true and c1 terminates with normal exit, then we know forall σ3
with

((if e then c1 else c2) ;; c3, σ1) ⇓ (ek, σ3)

there exists σ2 such that

(c1, σ1) ⇓ (ϵ, σ2) (c3, σ2) ⇓ (ek, σ3)

Springer Nature 2021 LATEX template

76 Deep Embedding v.s Shallow Embedding

and we can construct by

(c1, σ1) ⇓ (ϵ, σ2) (c3, σ2) ⇓ (ek, σ3)

(c1 ;; c3, σ1) ⇓ (ek, σ3) eval(e, σ1) = true

(if e then c1 ;; c3 else c2 ;; c3, σ1) ⇓ (ek, σ3)

and by the triple in the premise, we know (ek, σ) ⊨ {Q, [R⃗]} and we prove the triple
in the proof goal. If eval(e, σ1) = true and c1 terminates with some control flow exit,
then if e then c1 ; ; c3 else c2 ; ; c3 terminates with the same exit and state, and
therefore we know the terminal state satisfies post-conditions. The same happens
when eval(e, σ1) = false, and we prove the triple to be valid. □

Theorem 27 (nocontinue) Forall P,Q,Rbrk, Rcon, R
′
con, c, if c does not contain

continue and ⊨b {P}c{Q, [Rbrk, Rcon]}, then ⊨b {P}c{Q, [Rbrk, R
′
con]}.

Proof Consider the initial state to be σ1 with σ1 ⊨ P .
The triple in the premise guarantees c will not cause error and we only need

to show any (ek, σ2) that (c, σ1) reduces to satisfies [Rbrk, R
′
con]. In fact, we can

prove by induction over (c, σ1) ⇓ (ek, σ2) that ek is not con, i.e., it never exits with
continue because c does not contain continue. Therefore, (ek, σ2) satisfies [Rbrk,⊥]
and obviously satisfies [Rbrk, R

′
con]. □

The proof idea of nocontinue in the big-step based embedding is similar
to that in the weakest precondition based embedding, but we do not need to do
the simulation because there is no requirement after each step of reduction in
the big-step based one, and we only need to show certain properties of the final
state it reduces to. They are very different from the proof in the continuation
based one because the interpretation of the post-condition’s satisfiability is
different.

Appendix C Semantics Iris-CF

This section presents key reduction rules for Iris-CF to support control flows.

(loope v, σ)→h (loope e, σ, ϵ) (C1)

(loope continue, σ)→h (loope e, σ, ϵ) (C2)

(loope (break v), σ)→h (v, σ, ϵ) (C3)

(K[break v], σ)→h (break v, σ, ϵ) if K ̸= • and break K (C4)

(K[continue], σ)→h (continue, σ, ϵ) if K ̸= • and continue K (C5)

Fig. 17 Head Reductions for Loop

Springer Nature 2021 LATEX template

Deep Embedding v.s Shallow Embedding 77

(C1), (C2) When the current iteration of a loop evaluate to value or continue
terminal, we load the loop body e from the subscription of loope into the
loop context for next iteration.

(C3) When the current iteration of a loop evaluate to break terminal, we
evaluate the entire loop to value v.

(C4), (C5) Break and continue terminals can skip the context around it, if
they can “penetrate” () it, e.g., continue penetrates K ; ; • but not
loope •.

	Introduction
	Extended Proof Rules.
	Extended Rules & Hoare Logic Embeddings.
	Another Contribution: A Lifting Approach.
	Paper Structure.

	Program Logic & Extended Rules
	The Toy Language and the Program Logic
	While-CF Language
	Assertion Language
	Primary Proof Rules
	Transformation Rules
	Extended Rules — Transformation Rules

	Extended Rules — Structural Rules
	Extended Rules — Inversion Rules

	Remark.
	Structural Rules
	Inversion Rules
	Summary.

	Nomenclature
	Embeddings of Programming Languages
	Remark.

	Embeddings of Assertion Languages
	Embeddings of Program Logics

	Different Embeddings of Program Logics
	Big-step (BigS.) based Shallow Embedding
	Related Projects.

	Weakest Precondition (WP) based Shallow Embedding
	Remark.
	Related Projects.

	Continuation (Cont.) based Shallow Embedding
	Related Projects.

	Deep Embeddings
	Related Projects.

	Other Logic based Verification Methods
	Hoare Monad & Dijkstra Monad
	Weakest Precondition based Verification
	Characteristic Formulae

	Proving Extended Rules in Different Embeddings
	Extended Rules — Transformation Rules
	Extended Rules — Structural Rules
	Extended Rules — Inversion Rules

	Deep Embedding
	The Choice of the Deep Embedding.
	Proving Inversion Rules.
	Remark.
	Proving Other Rules.

	Big-step based Shallow Embedding
	Proving Transformation Rules.
	Proving Structural Rules.
	Proving Inversion Rules.

	Weakest precondition based Shallow Embedding
	Proving Transformation Rules: Refinement.
	Proving Structural Rules: Simulation.
	Proving Structural Rules.
	Proving Inversion Rules

	Continuation based Shallow Embedding
	Proving Transformation Rules.
	Proving Structural Rules
	Proving Inversion Rules
	Summary.

	From Shallow Embedding to Deep Embedding
	Choices of Primary Rules in Deep Embedding
	Discussion
	Embeddings of Separation Logic
	While-CF with Memory Operations
	Separation Logic Proof Rules

	Frame Rule and More Potential Shallow Embeddings
	Frame Rule and Deep Embeddings

	Procedure Calls & Hypothetical Frame Rule
	While-CF with Memory Operations and Procedure Calls
	Procedure Call Proof Rules

	Total Correctness
	Non-Determinism
	Impredicative Assertions
	The Soundness Proof Technique

	Real Projects
	Deeply Embedded VST
	Shallowly Embedded Iris-CF & Deeply Embedded Iris-Imp
	Extended Rules in Shallowly Embedded Iris-CF.
	Deeply Embedded Iris-Imp.

	Related Work
	Conclusion
	Big-step semantics
	Proofs of Some Extended Rules in Big-step semantics
	Semantics Iris-CF

